Advancements in Numerical Solutions:Fractal Runge-Kutta Approach to Model Time-Dependent MHD Newtonian Fluid with Rescaled Viscosity on Riga Plate  

在线阅读下载全文

作  者:Muhammad Shoaib Arif Kamaleldin Abodayeh Yasir Nawaz 

机构地区:[1]Department of Mathematics and Sciences,College of Humanities and Sciences,Prince Sultan University,Riyadh,11586,Saudi Arabia [2]Department of Mathematics,Air University,PAF Complex E-9,Islamabad,44000,Pakistan

出  处:《Computer Modeling in Engineering & Sciences》2024年第11期1213-1241,共29页工程与科学中的计算机建模(英文)

基  金:support of Prince Sultan University in paying the article processing charges(APC)for this publication.

摘  要:Fractal time-dependent issues in fluid dynamics provide a distinct difficulty in numerical analysis due to their complex characteristics,necessitating specialized computing techniques for precise and economical solutions.This study presents an innovative computational approach to tackle these difficulties.The main focus is applying the Fractal Runge-Kutta Method to model the time-dependent magnetohydrodynamic(MHD)Newtonian fluid with rescaled viscosity flow on Riga plates.An efficient computational scheme is proposed for handling fractal time-dependent problems in flow phenomena.The scheme is comprised of three stages and constructed using three different time levels.The stability of the scheme is shown by employing the Fourier series analysis to solve scalar problems.The scheme’s convergence is guaranteed for a time fractal partial differential equations system.The scheme is applied to the dimensionless fractal heat and mass transfer model of incompressible,unsteady,laminar,Newtonian fluid with rescaled viscosity flow over the flat and oscillatory Riga plates under the effects of space-and temperature-dependent heat sources.The first-order back differences discretize the continuity equation.The results show that skin friction local Nusselt number declines by raising the coefficient of the temperature-dependent term of heat source and Eckert number.The numerical simulations provide valuable insights into fluid dynamics,explicitly highlighting the influence of the temperature-dependent coefficient of the heat source and the Eckert number on skin friction and local Nusselt number.

关 键 词:Fractal scheme stability convergence fractal Newtonian fluid with rescaled viscosity fluid heat generation 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象