检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Arshyn Altybay Niyaz Tokmagambetov
机构地区:[1]Department of Differential Equations,Institute of Mathematics and Mathematical Modeling,Almaty,050010,Kazakhstan [2]Department of Computer Science,Al-Farabi Kazakh National University,Almaty,050040,Kazakhstan [3]Centre de Recerca Matemática Edifici C,Bellaterra(Barcelona),08193,Spain
出 处:《Computer Modeling in Engineering & Sciences》2024年第11期1867-1881,共15页工程与科学中的计算机建模(英文)
基 金:funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grants No.AP14972032);NT is also supported by the Beatriu de Pinós programme and by AGAUR(Generalitat de Catalunya)grant 2021 SGR 00087.
摘 要:In this paper,we consider the numerical implementation of the 2D wave equation in isotropic-heterogeneous media.The stability analysis of the scheme using the von Neumann stability method has been studied.We conducted a study on modeling the propagation of acoustic waves in a heterogeneous medium and performed numerical simulations in various heterogeneous media at different time steps.Developed parallel code using Compute Unified Device Architecture(CUDA)technology and tested on domains of various sizes.Performance analysis showed that our parallel approach showed significant speedup compared to sequential code on the Central Processing Unit(CPU).The proposed parallel visualization simulator can be an important tool for numerous wave control systems in engineering practice.
关 键 词:Acoustic wave simulation numerical simulation isotropic-heterogeneous media graphics processing unit(GPU) von Neumann stability analysis
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49