基于云边协作的工业互联网排产方法:以钢铁热轧生产为例  

Industrial Internet Scheduling Method Based on Cloud-Edge Collaboration:A Case Study of Steel Hot Rolling

在线阅读下载全文

作  者:丁婧伊 金嘉晖[1] 杨丰赫 熊润群[1] 单冯 东方[1] DING Jing-yi;JIN Jia-hui;YANG Feng-he;XIONG Run-qun;SHAN Feng;DONG Fang(School of Computer Science and Engineering,Southeast University,Nanjing,Jiangsu 211189,China;School of Cyber Science and Engineering,Southeast University,Nanjing,Jiangsu 211189,China)

机构地区:[1]东南大学计算机科学与工程学院,江苏南京211189 [2]东南大学网络空间安全学院,江苏南京211189

出  处:《电子学报》2024年第9期2988-2999,共12页Acta Electronica Sinica

基  金:国家重点研发计划(No.2021YFB2900100);国家自然科学基金(No.62232004,No.62072099,No.61632008)。

摘  要:随着工业互联网的蓬勃发展,工业生产需要满足用户的个性化需求.由于个性化产品规格多样种类繁多,一个高效的智能排产方法对企业的生产制造尤为重要.从部署模式来看,现有的智能排产系统可分为企业本地部署和云排产服务两类.本地排产系统的计算与存储资源相对有限,难以满足精确排产算法的需求;而云排产系统需要大量工业核心排产数据的支撑并按需计费,计算存储与网络传输的开销使排产服务成本较高.此外,工业核心数据上传至云可能存在数据泄露的风险.针对以上问题,本文以钢铁热轧生产为例,将边缘计算技术引入智能排产,提出了一种云边协作的工业互联网排产框架(Production Scheduling based on Edge-Cloud-Collaboration,PSECC),本框架在边缘端预处理原始工业数据,保证核心生产数据保留在企业端;在云端进行算法求解,通过部署通用型求解算法又为框架赋予了可扩展性.本文基于PSECC框架设计实现了针对钢铁热轧排产任务的云边分解方法,实验证明本文提出的云边协作排产方法与常规求解器的性能相似,但是可以避免工业核心数据上云,且云端求解器的选择更加灵活.在性能方面,云排产的总排产时间是PSECC的1.4~3.7倍,其中网络传输时间是10~15倍.With the rapid development of the industrial Internet,industrial production needs to satisfy personalized us⁃er requirements.Due to the wide variety of personalized product specifications,an efficient and intelligent scheduling meth⁃od is particularly important for manufacturing enterprises.From the perspective of deployment mode,existing intelligent scheduling systems can be divided into two categories:enterprise on-premises deployment and cloud scheduling services.The computing and storage resources of the local scheduling system are relatively limited,making it difficult to meet the needs of accurate scheduling algorithms.In contrast,cloud scheduling systems require the support of a large amount of in⁃dustrial core scheduling data and charge on demand.The overhead of computing,storage,and network transmission makes scheduling service costs high.Additionally,uploading core industrial data to the cloud may carry the risk of data leakage.To address these issues,this paper takes the hot rolling production of iron and steel as an example,introduces edge comput⁃ing technology into intelligent production scheduling,and proposes a cloud-edge collaborative industrial internet production scheduling framework(PSECC).The framework preprocesses the original industrial data at the edge to ensure that core pro⁃duction data is kept at the enterprise end,while the algorithm is solved in the cloud.The framework is also extended by de⁃ploying a general-purpose algorithm.Based on the PSECC framework,we designed and realized a cloud-edge decomposi⁃tion method for hot rolling production scheduling tasks in steel.Experiments show that the performance of the cloud-edge collaborative production scheduling method proposed in this paper is similar to that of the conventional solver,but it can avoid uploading industrial core data to the cloud,and the choice of cloud solver is more flexible.In terms of performance,the total scheduling time of cloud scheduling is 1.4 to 3.7 times that of PSECC,and the network transmission tim

关 键 词:云边协作 工业互联网 钢铁热轧 作业车间调度 个性化定制 智能排产 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象