The Wellbore Temperature and Pressure Behavior during the Flow Testing of Ultra-Deepwater Gas Wells  

在线阅读下载全文

作  者:Xingbin Zhao Neng Yang Hao Liang Mingqiang Wei Benteng Ma Dongling Qiu 

机构地区:[1]Exploration Department,CNOOC China Limited Shanghai Branch Company,Shanghai,200335,China [2]Petroleum Engineering School,Southwest Petroleum University,Chengdu,610500,China [3]Exploration and Development Department,CNOOC China Limited Hainan Branch Company,Haikou,570300,China

出  处:《Fluid Dynamics & Materials Processing》2024年第11期2523-2540,共18页流体力学与材料加工(英文)

摘  要:The transientflow testing of ultra-deepwater gas wells is greatly impacted by the low temperatures of seawater encountered over extended distances.This leads to a redistribution of temperature within the wellbore,which in turn influences theflow behavior.To accurately predict such a temperature distribution,in this study a comprehensive model of theflowing temperature and pressurefields is developed.This model is based on principles offluid mechanics,heat transfer,mass conservation,and energy conservation and relies on the Runge-Kutta method for accurate integration in time of the resulting equations.The analysis includes the examination of the influence of various factors,such as gasflow production rate,thermal diffusivity of the formation,and thermal diffusivity of seawater,on the temperature and pressure profiles of the wellbore.The keyfindings can be summarized as follows:1.Higher production rates during testing lead to increasedflowing temperatures and decreased pressures within the wellbore.However,in the presence of a seawater thermocline,a crossover inflowing temperature is observed.2.An increase in wellbore pressure is associated with larger pipe diameters.3.Greater thermal diffusivity of the formation results in more rapid heat transfer from the wellbore to the formation,which causes lowerflowing temperatures within the wellbore.4.In an isothermal layer,higher thermal diffusivity of seawater leads to increased wellboreflowing temperatures.Conversely,in thermocline and mixed layer segments,lower temperatures are noted.5.Production test data from a representative deep-water gas well in the South China Sea,used to calculate the bottom-seafloor-wellhead temperature and pressurefields across three operating modes,indicate that the average error in temperature prediction is 2.18%,while the average error in pressure prediction is 5.26%,thereby confirming the reliability of the theoretical model.

关 键 词:Ultra-deepwater gas well wellboreflowing temperature-pressure profile heat transfer production testing 

分 类 号:O35[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象