检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:柴林杰 荆志朋 胡诗尧[1] CHAI Lin-jie;JING Zhi-peng;HU Shi-yao(State Grid Hebei Economic Research Institute,Shijiazhuang Hebei 050021,China;Tianjin University,Tianjin 300072,China)
机构地区:[1]国网河北省电力有限公司经济技术研究院,河北石家庄050021 [2]天津大学,天津300072
出 处:《计算机仿真》2024年第10期89-94,共6页Computer Simulation
基 金:国家电网公司科技项目(5204JY20000B)。
摘 要:配电网规划设计具有重要的现实意义,但传统粒子群算法在求解最优参数是易陷入局部最优解,易造成配电网整体规划效益差。为解决上述问题,采用平均极值与惯性权重优化的方式改进PSO算法,提出一种DAPSO最优求解算法。首先为提高电力系统的安全性与稳定性,将网络稳定度设计规划作为目标函数对配电网设计进行约束;然后构建以建网运行成本、电力生产成本和能量损失成本为中心的经济目标模型;最后构建了27节点的TE配电网的规划最优模型,并以DAPSO算法其中的三个节点进行重新分布式规划设计。仿真结果表明,较传统PSO算法相比,改进DAPSO算法的平均计算时间减少了39.9%,且不存在局部最优的问题,同时上述算法可以更快的收敛至总运营成本最低,即全局最优解。即DAPSO算法在通过优化,解决了传统算法存在局部最优的问题,且降低了平均计算时间,提升了收敛速度,综上DAPSO算法在配电网规划设计最优求解中具有重要的研究意义。Distribution network planning and design has important practical significance,but the traditional particle swarm optimization algorithm is easy to fall into the local optimal solution when solving the optimal parameters,which is easy to cause poor efficiency of the overall planning of the distribution network.In order to solve the above problems,this paper proposes a DAPSO optimal solution algorithm by using the average extremum and inertia weight optimization to improve the PSO algorithm.Firstly,in order to improve the security and stability of the power system,the network stability design planning was taken as the objective function to constrain the design of the distribution network,and then an economic objective model centered on the cost of network construction and operation,power production cost and energy loss cost was constructed.Finally,the optimal planning model of the 27-node TE distribution network was constructed,and the DAPSO algorithm was used to re-distribute the planning design of three nodes.The simulation results show that compared with the traditional PSO algorithm,the average computing time of the improved DAPSO algorithm is reduced by 39.9%,there is no local optimal problem,and the proposed algorithm can converge to the global optimal solution with the lowest total operating cost faster.The DAPSO algorithm solves the problem of local optimum in the traditional algorithm through optimization,reduces the average calculation time,and improves the convergence speed.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70