基于GIS辅助的多源地理空间矢量数据挖掘方法  

A Method of Multisource Geospatial Vector Data Mining Based on GIS

在线阅读下载全文

作  者:李涛[1] 徐江 LI Tao;XU Jiang(Jiangsu University of Science and Technology,Zhenjiang Jiangsu 212003,China;College of Science,Jiangsu University of Science and Technology,Zhenjiang Jiangsu 212003,China)

机构地区:[1]江苏科技大学,江苏镇江212003 [2]江苏科技大学理学院,江苏镇江212003

出  处:《计算机仿真》2024年第9期465-469,共5页Computer Simulation

基  金:2022年中国高等教育学会高等教育科学研究规划课题(22XX0203)。

摘  要:噪声数据干扰下,数据挖掘精确度和效率偏低,为了提高数据挖掘结果的准确性,提出一种GIS辅助下多源地理空间矢量数据挖掘算法。通过非下采样小波变换方法对原始多源地理空间矢量数据多尺度分解,确保噪声和数据得到有效分离,通过变分偏微方程平滑数据内残余的噪声,避免数据内大量细节信息丢失。将GIS应用到多源地理空间矢量数据挖掘中,建立数据挖掘模型,并根据图层之间的关系变换数据,实现多源地理空间矢量数据的离散化处理。利用形式背景构建概念格和Hasse图,根据概念格中的内涵缩减集形成非冗余关联规则,结合数据挖掘模型完成数据挖掘。实验结果表明,所提方法可以有效滤除多源地理空间矢量数据中的噪声,获取满意的数据挖掘效果。Under the interference of noise data,the accuracy and efficiency of data mining are both low.In order to improve the accuracy of data mining results,a multi-source geographic vector data mining algorithm based on GIS was proposed.First,the undecimated wavelet transform was used to perform multi-scale decomposition on the original multi-source geographic vector data,thus ensuring that noise and data could be effectively separated.Then,variational partial differential equations were used to smooth the residual noise in the data,thus avoiding the loss of detailed information in the data.Next,GIS was applied to the multi-source geographic vector data mining.And a data mining model was built.Meanwhile,the data was transformed according to the relationship between layers,thus discretizing multi-source geographic vector data.Moreover,conceptual lattice and Hasse diagram were constructed based on formal contexts.Finally,non-redundant association rules were formed by the intension reduction set in the conceptual lattice.Thus,the data mining task was completed.Experimental results show that the proposed method can effectively filter out the noise in the multi-source geographic vector data and obtain satisfactory data mining effects.

关 键 词:非下采样小波变换方法 数据挖掘 概念格 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象