检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:MENG Canjun ZHANG Liwen 孟灿君;张力文(华东理工大学数学学院,上海200237)
机构地区:[1]School of Mathematics,East China University of Science and Technology,Shanghai,200237,P.R.China
出 处:《数学进展》2024年第6期1173-1180,共8页Advances in Mathematics(China)
基 金:Supported by NSFC(No.12011530064);Natural Science Foundation of Shanghai(No.22ZR1416300)。
摘 要:Let G be a graph on n vertices whose degree sequence is d_(1)≥…≥d_(n).For a positive integer p,the degree power of G is defined by e_p(G)=∑_(i=1)^(n) d_(i)^(p).In this paper,by majorization,we prove that for a minimally k-connected graph G of order n≥4k,it always holds e_(2)(G)≤kn(n-k)and the extremal graph is K_(k,n-k).Furthermore,we respectively determine the maximum degree powers among all minimally 2(3)-connected graphs and minimally 2-edgeconnected graphs,whose extremal graphs are also characterized.设图G的顶点数为n,度序列为d_(1)≥…≥d_(n).对正整数p,图G的度幂定义为e_(p)(G)=∑_(i=1)^(n)d_(i)^(p).本文利用优超证明了顶点数n≥4k的极小k-连通图满足e_(2)(G)≤kn(n-k),且极图为K_(k,n-k).进一步,本文分别确定了极小2(3)-连通图和极小2-边-连通图的最大度幂,并刻画了相应的极图.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.101.237