A Multitime-scale Deep Learning Model for Lithium-ion Battery Health Assessment Using Soft Parameter-sharing Mechanism  

在线阅读下载全文

作  者:Lulu Wang Kun Zheng Yijing Li Zhipeng Yang Feifan Zhou Jia Guo Jinhao Meng 

机构地区:[1]North China Electric Power Test and Research Institute of China Datang Group Science and Technology Research Institute Co.,Ltd.,Beijing 100040,China [2]School of Future Technology,Xi'an Jiaotong University,Xi'an 710049,China [3]National Innovation Platform(Center)for Industry-Education Integration of Energy Storage Technology,Xi'an Jiaotong University,Xi'an 710049,China [4]School of Electrical Engineering,Xi'an Jiaotong University,Xi'an 710049,China [5]Department of Mechanical Engineering,Imperial College London,London SW72AZ,UK

出  处:《Chinese Journal of Electrical Engineering》2024年第3期1-11,共11页中国电气工程学报(英文)

基  金:Supported by the Science and Technology Project of Datang North China InstituteunderGrant2023HBY-GL001.

摘  要:Efficient assessment of battery degradation is important to effectively utilize and maintain battery management systems.This study introduces an innovative residual convolutional network(RCN)-gated recurrent unit(GRU)model to accurately assess health of lithium-ion batteries on multiple time scales.The model employs a soft parameter-sharing mechanism to identify both short-d dT and long-term degradation patterns.The continuously looped(V),T(V),dQ/dV and dT/dV are extracted to form a four-channel image,dV dV from which the RCN can automatically extract the features and the GRU can capture the temporal features.By designing a soft parameter-sharing mechanism,the model can seamlessly predict the capacity and remaining useful life(RUL)on a dual time scale.The proposed method is validated on a large MIT-Stanford dataset comprising 124 cells,showing a high accuracy in terms of mean absolute errors of 0.00477 for capacity and 83 for RUL.Furthermore,studying the partial voltage fragment reveals the promising performance of the proposed method across various voltage ranges.Specifically,in the partial voltage segment of 2.8-3.2 V,root mean square errors of 0.0107 for capacity and 140 for RUL are achieved.

关 键 词:Residual convolutional network-gated recurrent unit capacity estimation soft parameter sharing remaining useful life prediction 

分 类 号:TM912[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象