检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lulu Wang Kun Zheng Yijing Li Zhipeng Yang Feifan Zhou Jia Guo Jinhao Meng
机构地区:[1]North China Electric Power Test and Research Institute of China Datang Group Science and Technology Research Institute Co.,Ltd.,Beijing 100040,China [2]School of Future Technology,Xi'an Jiaotong University,Xi'an 710049,China [3]National Innovation Platform(Center)for Industry-Education Integration of Energy Storage Technology,Xi'an Jiaotong University,Xi'an 710049,China [4]School of Electrical Engineering,Xi'an Jiaotong University,Xi'an 710049,China [5]Department of Mechanical Engineering,Imperial College London,London SW72AZ,UK
出 处:《Chinese Journal of Electrical Engineering》2024年第3期1-11,共11页中国电气工程学报(英文)
基 金:Supported by the Science and Technology Project of Datang North China InstituteunderGrant2023HBY-GL001.
摘 要:Efficient assessment of battery degradation is important to effectively utilize and maintain battery management systems.This study introduces an innovative residual convolutional network(RCN)-gated recurrent unit(GRU)model to accurately assess health of lithium-ion batteries on multiple time scales.The model employs a soft parameter-sharing mechanism to identify both short-d dT and long-term degradation patterns.The continuously looped(V),T(V),dQ/dV and dT/dV are extracted to form a four-channel image,dV dV from which the RCN can automatically extract the features and the GRU can capture the temporal features.By designing a soft parameter-sharing mechanism,the model can seamlessly predict the capacity and remaining useful life(RUL)on a dual time scale.The proposed method is validated on a large MIT-Stanford dataset comprising 124 cells,showing a high accuracy in terms of mean absolute errors of 0.00477 for capacity and 83 for RUL.Furthermore,studying the partial voltage fragment reveals the promising performance of the proposed method across various voltage ranges.Specifically,in the partial voltage segment of 2.8-3.2 V,root mean square errors of 0.0107 for capacity and 140 for RUL are achieved.
关 键 词:Residual convolutional network-gated recurrent unit capacity estimation soft parameter sharing remaining useful life prediction
分 类 号:TM912[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249