检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张峻凯 胡旭光 刘要博 许晴 马大中[1] 孙秋野[1] ZHANG Junkai;HU Xuguang;LIU Yaobo;XU Qing;MA Dazhong;SUN Qiuye(College of Information Science and Engineering,Northeastern University,Shenyang 110819,China)
机构地区:[1]东北大学信息科学与工程学院,辽宁省沈阳市110819
出 处:《电力系统自动化》2024年第21期120-128,共9页Automation of Electric Power Systems
基 金:国家自然科学基金资助项目(62303103);辽宁省教育厅基本科研项目(JYTQN2023161);辽宁省自然科学基金资助项目(2023-BSBA-140)。
摘 要:居民短期负荷预测能够为虚拟电厂提供实时、灵活的电力需求信息,有助于虚拟电厂实现能源高效利用与优化电力市场交易。由于居民负荷相关性的日益凸显,传统预测方法仅基于单个居民历史负荷进行时序预测,无法满足规模化虚拟电厂对居民负荷关联性的综合需求。基于此,文中提出一种基于动态关联图注意力网络的虚拟电厂居民短期负荷预测方法。首先,提出了混合相关性分析方法来刻画居民负荷之间的线性和非线性关系,并进一步提出了权重剪枝阈值机制得到居民负荷混合相关性矩阵;然后,基于该矩阵构建动态关联图结构,进而提出时间图注意力网络机制以深入学习居民负荷的时空关联特性,并实现居民短期负荷预测目标;最后,以某地区实际居民负荷数据为例,验证了所提方法的有效性。Short-term residential load forecasting can provide real-time and flexible power demand information for virtual power plants,which is helpful for virtual power plants to realize efficient utilization of energy and optimize electricity market transactions.With the increasing prominence of correlation among residential loads,traditional forecasting methods,which primarily rely on time-series forecasting based on individual residential historical load,fail to satisfy the comprehensive demands for load interconnectivity in large-scale virtual power plant.Based on this,a short-term residential load forecasting method based on dynamic association graph attention networks for the virtual power plant is proposed.Firstly,a hybrid correlation analysis method is proposed to describe the linear and nonlinear relationship between residential loads,and a weight pruning threshold mechanism is further proposed to derive the hybrid correlation matrix of residential loads.Secondly,a dynamic association graph structure is constructed based on the hybrid correlation matrix,and a temporal graph attention mechanism is proposed to deeply learn the spatial-temporal association characteristics of residential loads,achieving the objective of short-term residential load forecasting.Finally,the effectiveness of the proposed method is verified by actual residential load data from a specific region.
关 键 词:虚拟电厂 短期负荷预测 混合相关性 动态关联图 图神经网络 时间图注意力机制
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38