检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛晓强 纪志刚[1] Xue Xiaoqiang;Ji Zhigang(Department ofUrology,Peking Union Medical College Hospital,Chinese Academy of Medical Sciences,Beijing 100730,China)
机构地区:[1]中国医学科学院北京协和医院泌尿外科,北京100730
出 处:《器官移植》2024年第6期863-867,共5页Organ Transplantation
基 金:中央高水平医院临床科研专项(2022-PUMCH-B-008)。
摘 要:近年来,肾移植研究已经取得显著进展,但远期预后仍面临较多问题亟待探索,如排斥反应、感染等。人工智能够模拟和执行类似人类智能的算法和系统,在处理复杂的疾病治疗和预后预测方面具有较大的潜力。随着机器学习、深度学习等人工智能技术的不断进步,研究者开始将人工智能用于肾移植远期预后的预测和优化,并取得了一定的成果。因此,本文就人工智能技术在预测肾移植结局、药物浓度监测及远期并发症中的应用进行综述,探讨人工智能在肾移植远期受者中的应用进展,以及潜在的局限性和解决方案,旨在为促进人工智能在肾移植领域中的实际应用和推广提供新思路。In recent years,significant progress has been made in kidney transplantation research,but long-termprognosis still faces many challenges,such as rejection and infection.Artificial intelligence,which simulates and executesalgorithms and systems similar to human intelligence,it shows great potential in handling complex disease treatments andprognosis predictions.With the continuous advancements in artificial intelligence technologies like machine learning anddeep learning,researchers have started to apply these technologies to predict and optimize long-term outcomes of kidneytransplantation,achieving certain results.Therefore,this article reviews the application of artificial intelligencetechnologies in predicting kidney transplant outcomes,monitoring drug concentrations,and managing long-termcomplications.It explores the progress of artificial intelligence applications in long-term kidney transplant recipients,discusses potential limitations and solutions,and aims to provide new ideas for promoting the practical application anddissemination of artificial intelligence in the field of kidney transplantation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49