基于CDQOB网络子孔径重构的单比特无人机载SAR成像  

One-bit UAV SAR Imaging Based on CDQOB Network Sub-aperture Reconstruction

在线阅读下载全文

作  者:潘嘉文 孟飞[2] 赵博[1] 陈洪猛[2] 黄磊[1] PAN Jiawen;MENG Fei;ZHAO Bo;CHEN Hongmeng;HUANG Lei(The State Key Laboratory of Radio Frequency Heterogeneous Integration,Shenzhen University,Shenzhen Guangdong 518060,China;Beijing Institute of Radio Measurement,Beijing 100089,China)

机构地区:[1]深圳大学射频异质异构集成全国重点实验室,广东深圳518060 [2]北京无线电测量研究所,北京100089

出  处:《现代雷达》2024年第10期44-48,共5页Modern Radar

基  金:国家自然科学基金资助项目(62171293,62431021);深圳市基金资助项目(JCYJ20230808105359045);装备预研教育部联合基金资助项目(8091B032224);国家杰出青年科学基金资助项目(61925108);国家自然科学基金国际合作与交流重点项目(62220106009)。

摘  要:合成孔径雷达(SAR)由于其良好的特性被广泛应用于高分辨成像,但成像所需的庞大数据导致其难以在资源受限的平台推广应用。单比特SAR通过将回波采样点表征为1比特二进制数字信号,可以达到降低数据量、缓解平台负担的目的,但二值数据跳变产生的高阶谐波将导致成像质量下降。为提升单比特SAR成像质量,提出基于卷积去量化(CDQOB)网络的无人机载条带SAR成像方法,通过单比特子孔径数据实现运动误差估计与智能化距离-多普勒二维谱重构,进而实现低数据量下的高质量条带SAR成像。通过实测数据的处理分析,验证了所提单比特成像方法的有效性。Synthetic aperture radar(SAR)has been widely applied for high-resolution imaging due to its excellent characteristics.However,the large amount of data required for imaging makes it difficult to apply on resource-constrained platforms.One-bit SAR reduces data volume and alleviates the platform burden by representing echo samples as one-bit binary digital signals.Nevertheless,the high-order harmonics generated by the binary data transitions result in a degradation in imaging quality.To improve the imaging quality of one-bit SAR,this paper proposes a UAV-borne stripmap SAR imaging method based on the convolutional de-quantization one-bit(CDQOB)network.The proposed method utilizes one-bit sub-aperture data to achieve motion error estimation and intelligent Range-Doppler two-dimensional spectrum reconstruction,thereby achieving high-quality stripmap SAR imaging with reduced data volume.The effectiveness of the proposed one-bit imaging method has been validated through the analysis of measured data.

关 键 词:单比特 卷积去量化 运动误差估计 子孔径 条带 

分 类 号:TN957.52[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象