检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈榕芳 严培晶 吕校宇 莫宝庆 涂饶萍[3] 白纯 任衍康 朱桂琦 王卉 Chen Rongfang;Yan Peijing;Lyu Xiaoyu;Mo Baoqing;Tu Raoping;Bai Chun;Ren Yankang;Zhu Guiqi;Wang Hui(Department of Health Management,Fujian Vocational College of Bioengineering,Fuzhou,Fujian,350007,P.R.China;Committee of Geriatric Nutrition,Gerontology Society of Jiangsu Province,Nanjing,Jiangsu,210005,P.R.China;School of Health Management,Fujian Medical University,Fuzhou,Fujian,350122,P.R.China;People s Hospital Affiliated to Peking University,Beijing,100044,P.R.China;Department of Critical Care Medicine,First Affiliated Hospital of Nanjing Medical University,Nanjing,Jiangsu,210029,P.R.China;Shibei Hospital,Jing an District,Shanghai,200443,P.R.China;Department of Nutriology,Cancer Hospital Affiliated to Nanjing Medical University,Cancer Hospital of Jiangsu Province,Institute of Cancer Prevention and Treatment of Jiangsu Province,Nanjing,Jiangsu,210009,P.R.China)
机构地区:[1]福建生物工程职业技术学院健康管理系,福建福州350007 [2]江苏省老年学学会老年营养专业委员会,江苏南京210005 [3]福建医科大学卫生管理学院,福建福州350122 [4]北京大学附属人民医院,北京100044 [5]南京医科大学第一附属医院重症医学科,江苏南京210029 [6]上海市静安区市北医院,上海200443 [7]南京医科大学附属肿瘤医院营养科,江苏省肿瘤医院,江苏省肿瘤防治研究所,江苏南京210009
出 处:《老年医学与保健》2024年第5期1264-1269,1302,共7页Geriatrics & Health Care
基 金:福建生物工程职业学院普通高校项目(2020MS02);福建省自然科学基金项目(青年创新)(2023J05043)。
摘 要:目的基于CHARLS数据库的资料,建立糖尿病老年人失能的预测模型,并分析其效用。方法选取2018年发布的2015年中国健康与养老纵向研究(China health and retirement longitudinal study,CHARLS)调查中的4797例患有糖尿病老年人的相关资料,包括基本特征、体格测量、生活习惯、伴随症状和疾症、血液和血生化指标、功能检测等。根据ADL将其分为失能与无失能2组,在比较2组各指标的差异后,通过Logistic回归分析筛选失能有关因素,建立失能预测模型,并采用受试者工作特征(ROC)评价模型的效用。结果通过Logistic回归,共筛选到腰围、舒张压、饮酒、疼痛、下肢功能评分、上肢功能评分、血脂异常、卒中、情绪障碍、共病数量、居住状况、工作为相关因素,据此建立了失能预测模型,即模型公式为:ln=-4.880+0.012×腰围(cm)-0.010×舒张压(mmHg)-0.250×饮酒+0.854×疼痛+0.235×下肢功能评分+0.431×上肢功能评分-0.278×血脂异常+0.809×卒中+1.169×情绪障碍+0.165×共病数量-0.542×居住状况-0.083×工作(其中P为失能状态)。ROC分析结果显示,AUC为0.89(P<0.005)、敏感度0.82、特异度0.74,截断值0.26。结论依据CHARLS以Logistic回归遴选因素所构建的中国糖尿病老人失能状态预测模型具有较好的预测能力。Objective To establish a disability prediction model for the elderly with diabetes based on data from the China Health and Retirement Longitudinal Study(CHARLS)database and analyze its utility.Methods The data of 4797 elderly diabetic patients from the 2015 CHARLS survey released in 2018 were selected,including their basic characteristics,physical measurements,lifestyle habits,accompanying symptoms and diseases,blood and biochemical indicators,functional tests,etc.According to activities of daily living(ADL),they were divided into two groups:disabled group and non-disabled group.After comparing the difference of each index between the two groups,the disability-related factors were screened by logistic regression analysis,and a disability prediction model was established.The utility of the model was evaluated by receiver operating characteristic(ROC).Results Through logistic regression,waist circumference,diastolic blood pressure,alcohol drinking,pain,lower limb function score,upper limb function score,dyslipidemia,stroke,emotional disorder,number of comorbidities,living status,and work were identified as relevant factors.Based on these factors,a disability prediction model was established as follows:ln=-4.880+0.012×waist circumference(cm)-0.010×DBP(mmHg)-0.250×alcohol drinking+0.854×pain+0.235×lower limb cumulative score+0.431×upper limb cumulative score-0.278×dyslipidemia+0.809×stroke+1.169×emotional disorder+0.165×number of comorbidities-0.542×living status-0.083×work(P was the disabled state).The results of ROC analysis showed that the AUC was 0.89(P<0.005),the sensitivity was 0.82 the specificity was 0.74 and cutoff value was 0.26.Conclusion The disability prediction model established based on CHARLS database and the factors selected by Logistic regression has good predictive ability.
关 键 词:老年 中国健康与养老纵向研究 糖尿病 失能 预测模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.131.158.219