Blockchain based federated learning for intrusion detection for Internet of Things  

在线阅读下载全文

作  者:Nan SUN Wei WANG Yongxin TONG Kexin LIU 

机构地区:[1]School of Cyber Science and Technology,Beihang University,Beijing 100191,China [2]School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China [3]Zhongguancun Laboratory,Beijing 100094,China [4]School of Computer Science and Engineering,Beihang University,Beijing 100191,China

出  处:《Frontiers of Computer Science》2024年第5期109-119,共11页计算机科学前沿(英文版)

基  金:This work was supported in part by the National Key R&D Program of China(2018AAA0101100);the National Natural Science Foundation of China(Grant Nos.62022008 and 92067204).

摘  要:In Internet of Things(loT),data sharing among different devices can improve manufacture efficiency and reduce workload,and yet make the network systems be more vulnerable to various intrusion attacks.There has been realistic demand to develop an efficient intrusion detection algorithm for connected devices.Most of existing intrusion detection methods are trained in a centralized manner and are incapable to identify new unlabeled attack types.In this paper,a distributed federated intrusion detection method is proposed,utilizing the information contained in the labeled data as the prior knowledge to discover new unlabeled attack types.Besides,the blockchain technique is introduced in the federated learning process for the consensus of the entire framework.Experimental results are provided to show that our approach can identify the malicious entities,while outperforming the existing methods in discovering new intrusion attack types.

关 键 词:intrusion detection federated learning new attacks discovering blockchain 

分 类 号:TP391.44[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象