检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jiangtong LI Yang LEI Yuxuan BIAN Dawei CHENG Zhijun DING Changjun JIANG
机构地区:[1]Department of Computer Science and Technology,Tongji University,Shanghai 201804,China [2]Shanghai Artificial Intelligence Laboratory,Shanghai 200030,China
出 处:《Frontiers of Computer Science》2024年第5期239-241,共3页计算机科学前沿(英文版)
基 金:The work was supported by the National Key R&D Program of China(2022YFB4501704);the Shanghai Science and Technology InnovationAction PlanProject(22YS1400600 and 22511100700)。
摘 要:Retrieval-Augmented Generation(RAG)enhances the generative capacity of Large Language Models(LLMs)by appending retrieved documents to the current context.This approach has shown success in reading comprehension[1]and language modeling[2].RAG assumes the intent is in the input query,which can be expanded with a task description.However,in the financial domain,queries often span multiple sectors,challenging the ability of retrieval phase to adequately inform the generation phase.
关 键 词:GENERATIVE expanded assume
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171