检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈晨[1] 石赫 徐悦 张新梅[2] CHEN Chen;SHI He;XU Yue;ZHANG Xin-mei(School of Economics and Management,China University of Petroleum(East China),Qingdao 266580,China;College of Mechanical and Electrical Engineering,China University of Petroleum(East China),Qingdao 266580,China)
机构地区:[1]中国石油大学(华东)经济管理学院,青岛266580 [2]中国石油大学(华东)机电工程学院,青岛266580
出 处:《科学技术与工程》2024年第29期12650-12657,共8页Science Technology and Engineering
基 金:山东省自然科学基金(ZR2023MG041);2023年度青岛市社会科学规划研究项目(QDSKL2301037)。
摘 要:事故隐患分类能够直观反映企业安全生产管理的薄弱点,同时将直接决定企业优化安全管理工作的方向。油田安全生产过程中,隐患种类多,数据量大,单纯依赖人工方式分类及管理效率较低,且难以发掘数据中蕴含的潜在规律。基于油田安全生产的需求及事故隐患特征,提出了一种基于BERT-BiLSTM的分类模型,用于油田安全生产隐患文本的主题自动分类,通过基于Transformer的双向编码器表示(bidirectionalencoder representations from Transformer,BERT)模型提取输入文本的字符级特征,生成全局文本信息的向量表示,再通过双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)模型对局部关键信息和上下文深层次特征进行特征提取,进而通过Softmax激活函数进行概率计算得到分类结果。通过与传统分类方法的比较表明,BERT-BiLSTM分类模型在加权平均准确率、加权平均召回率和加权平均F_(1)等指标方面均有所改善,模型与油田企业现有安全管理信息系统的有机融合将为进一步提升油田企业的事故隐患管理针对性,推动企业安全管理从事后被动反应向事前主动预防转变提供重要的技术支撑。The weaknesses in enterprise safety production management are reflected in accident hazard classification,which determines the direction for optimizing safety management.In the process of oilfield safety production,a large amount of data and various types of hazards make it inefficient to rely solely on manual classification and management,as well as difficult to uncover potential patterns hidden in the data.Based on the requirements of oilfield safety production and the characteristics of hidden danger,a classification model based on BERT-BiLSTM was proposed for automatic topic classification of hidden danger text in oilfield safety production.Through the bidirectionalencoder representations from Transformer(BERT) model,character-level features of input text were extracted and vector representations of global text information were generated.Then,the bi-directional long short term memory(BiLSTM) model was used to extract local key information and contextual deep features,and the classification results were obtained by probability calculation using Softmax activation function.Comparisons with traditional classification methods reveal that the BERT-BiLSTM classification model has shown improvements in weighted average accuracy,weighted average recall,and weighted average F_1-score.Integrating the model with the existing safety management information system of oilfield enterprises will enhance targeted management of accident hazards and provide important technological support to shift enterprise safety management from reactive response to proactive prevention.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.232.138