微腔激子极化激元的自旋轨道耦合效应  

Spin‒Orbit Coupling Effect of Microcavity Exciton Polaritons

在线阅读下载全文

作  者:龙腾 李一鸣[2,4] 罗筱璇 廖清 李峰 Long Teng;Li Yiming;Luo Xiaoxuan;Liao Qing;Li Feng(Beijing Key Laboratory for Optical Materials and Photonic Devices,Capital Normal University,Beijing 100048,China;Key Laboratory for Physical Electronics and Devices of the Ministry of Education,School of Electronic Science and Engineering,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China;School of Air Defence and Anti-Missile,Air Force Engineering University,Xi’an 710051,Shaanxi,China;School of Information,Xi’an University of Finance and Economics,Xi’an 710100,Shaanxi,China)

机构地区:[1]首都师范大学光功能材料与器件北京市重点实验室,北京100048 [2]西安交通大学电子科学与工程学院电子物理与器件教育部重点实验室,陕西西安710049 [3]空军工程大学防空反导学院,陕西西安710051 [4]西安财经大学信息学院,陕西西安710100

出  处:《中国激光》2024年第18期257-270,共14页Chinese Journal of Lasers

基  金:国家自然科学基金(22150005,12074303);国家重点研发计划(2018YFA0704805,2023YFA1407100);北京市自然科学基金(KZ202110028043);陕西省科技创新团队项目(2021TD-56)。

摘  要:光学微腔中的偏振劈裂效应作为一种等效光子规范场,可引发光子自旋轨道耦合机制,对微腔光子的能带结构、自旋分布和动力学行为产生独特的影响。尤其是在微腔光子与激子发生强耦合的物理体系内,基于光子自旋轨道耦合效应对微腔激子极化激元进行调控展现出了更大的自由度和多样化特征。此外,外加磁场、各向异性激子材料、束缚性和周期性势场等都会引入新类型的等效规范场,产生一系列全新的光子自旋轨道耦合机制与现象。上述成果为微纳光子器件和光量子模拟器等提供了丰富的理论方法与应用平台。Significance One of the significant challenges in photonics is the on-chip integration of all-optical control,for which polaritonic fluids offer a promising solution.Polaritons enable the condensation of polaritons,which transforms a two-dimensional dilute photon gas into a high-density,highly coherent optical fluid with nonlinear interactions.Throughout the condensation process,the lifetime and coherence of polaritons improve significantly,thus facilitating the observation of their trajectories and the temporal evolution of their spin states.Furthermore,injecting photons with specific spin and momentum into microcavities via resonant excitation allows targeted investigation of photon transport and evolution processes,thereby realizing phenomena such as photonic topological insulators and the Hall effect.Progress In this paper,we systematically summarize studies pertaining to the spin‒orbit coupling effects of photons and excitons in Fabry‒Perot(F‒P)optical microcavities.Initially introduced in electronic systems,the concept of spin‒orbit coupling has been extended to cold atoms,free space,surface plasmons,metasurfaces,and finally to cavity polaritons.The second section briefly introduces F‒P optical microcavities and exciton polaritons.Subsequently,the third section focuses on the fundamental principles of TE‒TM mode splitting in microcavities,which generates an equivalent photon magnetic field,and summarizes a series of research advances pertaining to spin‒orbit coupling effects induced thereby.Subsequently,recent spin‒orbit coupling mechanisms are detailed,including those induced by external magnetic fields breaking time-reversal symmetry,material anisotropy,and their combined modulation with magnetic fields.These mechanisms yield diverse effective gauge fields corresponding to different photon physical processes and applications.An external magnetic field enhances the oscillator strength of excitonic components in polaritons,thus resulting in Zeeman splitting and breaking time-reversal symmetr

关 键 词:微腔光子学 激子极化激元 自旋轨道耦合 光子规范场 

分 类 号:O436[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象