检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨露 张奕源 YANG Lu;ZHANG Yi-yuan(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu,Sichuan 611756,China;Sichuan Shudao Railway Operation and Management Group Co.,Ltd.,Chengdu,Sichuan 610000,China)
机构地区:[1]西南交通大学交通运输与物流学院,四川成都611756 [2]四川蜀道铁路运营管理集团有限责任公司,四川成都610000
出 处:《公路交通科技》2024年第9期36-43,共8页Journal of Highway and Transportation Research and Development
基 金:四川省科技计划项目(2022-YFG087)。
摘 要:为了对比研究不同场景下电动汽车用户充电需求产生过程的异质性,选定工作日、非工作日为对象,采用递归联立方程双变量Probit模型分别建模研究两种环境下出行链模式(出行结构)与充电选择之间的影响关系:一种是出行链模式决策影响充电选择,另一种是充电选择影响出行链模式选择。利用出行链及充电选择调查数据对模型进行标定与验证,数据结果表明:工作日、非工作日场景下,模型的拟合结果存在差异,用户出行链模式与充电选择之间的主导关系不同,电动汽车充电需求的产生机理存在异质性。工作日中,出行链决策影响充电选择,表明用户的出行决策先于充电决策,充电需求的产生依附于出行链和活动计划。这种模式下,应充分考虑居民的出行习惯,结合出行目的、停驻点类型、出行时间、车辆续航情况等关键属性进行城市充电需求的预测和调度;而非工作日中,充电选择影响出行链决策,表明用户的充电决策先于出行决策,此时充电需求则较少受到出行计划的影响,应结合用户的个人社会经济属性、车辆属性、充电桩拥有情况等对充电偏好进行分析,依据充电选择情况进行需求预测和调度。因此,工作日、非工作日下存在两类充电需求产生机制,研究结果对城市充电需求预测及调度具有一定的指导意义。To comparatively study the heterogeneity of charging demand generation process of battery electric vehicle(BEV)users in different scenarios,the working days and non-working days were selected as the study objects.The cause-and-effect relation between trip chaining pattern(travel structure)and charging choice of BEV users in two scenarios were studied by using the recursive simultaneous bivariate probit(RSBP)model respectively.One scenario was that trip chaining pattern affects charging choice;and the other was that charging choice affects trip chaining pattern.The data on trip chaining and charging choice were used to calibrate and verify the model.The result indicates that in working days and non-working days scenarios,the model fitting results are different.The dominant relation between trip chaining pattern and charging choice is different.The generation mechanism of charging demand is heterogeneous.During working days,the trip chaining pattern affects the charging choice,indicating that the generation of user charging demand depends on the travel chaining and activity agenda.In this scenario,the residents’travel habits should be fully considered.The key attributes,e.g.,travel purpose,parking point type,travel time,and state of charge,should be combined to predict and schedule the urban charging demand.During non-working days,the charging choice affects trip chaining pattern,indicating that the charging decision is prior to the trip decision,and the charging demand is less affected by the trip plan.The charging preferences should be analyzed based on the individual socio-economic attributes,BEV attributes,and charging station ownership.The demand forecasting and scheduling should be carried out based on the charging choices.Therefore,there are two types of charging demand generation mechanism during working days and non-working days.The study result has certain guiding significance for predicting and scheduling the urban charging demand.
关 键 词:智能交通 城市充电需求 离散选择模型 电动汽车 充电选择 出行链模式 计量经济学
分 类 号:U491[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171