检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘芳[1] 李俊吉[1] Liu Fang;Li Junji(College of Information Science and Technology,Taiyuan University of Science and Technology,Jincheng 048011,China)
机构地区:[1]太原科技大学信息科学与技术学院,晋城048011
出 处:《现代计算机》2024年第18期28-33,共6页Modern Computer
基 金:2023年山西省高等学校一般性教学改革创新项目(J20230880)。
摘 要:在智能课堂中,实时掌握学生的情绪状态对于提高教学质量和个性化教育具有重要意义。引入通道注意力机制,对VGG16卷积神经网络进行改进,结合多层感知机,提出了VGG16_SE_MLP模型用于学生微表情分类识别以及情绪评估方法。首先对微表情数据集进行预处理,然后进行特征提取,在卷积层后面引入SE模块,并加入批归一化层防止过拟合,通过MLP计算得到新的特征向量以及微表情类别,最后对学生情绪进行评估。实验结果表明,该方法在微表情分类识别和情绪评估效果性能良好,为智能课堂提供了新思路。In the intelligent classroom,it is of great significance to grasp the emotional state of student in real time for improving the quality of teaching and personalized education.The channel attention mechanism is introduced to improve the VGG16 convolutional neural network.Combined with the multilayer perceptron the VGG16_SE_MLP model is proposed for the classification and recognition of student micro‑expression and emotion assessment.Firstly,the micro‑expression dataset is preprocessed,then the feature is extracted,and the SE module is introduced behind the convolution layer,and the batch normalization layer is added to prevent overfitting;the extracted features and micro‑expression class are calculated layer by layer through MLP;finally,the student emotion is evaluated.Experimental results show that the proposed method performs well in micro‑expression classification and emotional assessment,providing a new idea for intelligent classroom.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49