基于XGBoost的石化设备安全阀失效风险预测方法研究  

RESEARCH ON PREDICTION METHOD FOR SAFETY VALVE FAILURE RISK IN PETROCHEMI CAL EQUIPMENT BASED ON XGBOOST

在线阅读下载全文

作  者:陈中官 袁文彬 程伟 Chen Zhongguan;Yuan Wenbin;Cheng Wei(SINOPEC Zhenhai Refining&Chemical Company,Ningbo,Zhejiang,315207;Hefei General Machinery Research Institute Co.,Ltd.,Hefei,Anhui,230031)

机构地区:[1]中国石油化工股份有限公司镇海炼化分公司,浙江宁波315207 [2]合肥通用机械研究院有限公司,安徽合肥230031

出  处:《石油化工设备技术》2024年第6期1-4,30,I0001,共6页Petrochemical Equipment Technology

基  金:安徽省科学技术厅(批准号:202203a07020001)资助的课题;中国石油化工股份有限公司(批准号:30650601-22-FW1703-0023)资助的课题。

摘  要:安全阀是保障石化设备安全的最后一道屏障,对安全阀失效风险的预测越准确,越有利于石化设备的安全长周期运行和安全阀检修计划的合理安排。为高效准确预测安全阀的失效风险,提出一种基于XGBoost算法的安全阀失效风险评估方法。该方法是一种基于数据驱动的预测方法,采用XGBoost算法建模,优选影响安全阀失效风险的关键特征参量来实现安全阀失效风险的预测。实验数据表明,该方法对安全阀失效风险预测结果良好,在安全阀测试集上准确率为94.0%,优于传统机器学习方法的精度。此外,该方法还可为安全阀校验周期的确定提供参考依据。The safety valve is the last barrier to ensure the safety of petrochemical equipment.The more accurate the prediction of the risk of safety valve failure,the more conducive it is to the safe long-term operation of petrochemical equipment and the reasonable arrangement of safety valve maintenance plans.To efficiently and accurately predict the failure risk of safety valves,a risk assessment method based on XGBoost algorithm for safety valve failure is proposed.The method is a data-driven prediction method based on the XGBoost algorithm modelling,and the key feature parameters affecting the failure risk of safety valves are preferred to predict safety valve failure risk.The experimental data indicate that this method has good performance in predicting safety valve failure risk with an accuracy of 94.0%on the safety valve test set,which is better than the accuracy of traditional machine learning methods.In addition,this method can also provide reference basis for the determination of test and calibration cycle of safety valves.

关 键 词:安全阀 XGBoost 特征筛选 风险预测 

分 类 号:TE65[石油与天然气工程—油气加工工程] TQ055.81[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象