检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘云清[1,2] 吴越 张琼 颜飞 陈姗姗[1] LIU Yunqing;WU Yue;ZHANG Qiong;YAN Fei;CHEN Shanshan(School of Electronics Information,Changchun University of Science and Technology,Changchun 130000,China;Jilin Provincial Science and Technology Innovation Center of Intelligent Perception and Information Processing,Changchun 130000,China)
机构地区:[1]长春理工大学电子信息工程学院,长春130000 [2]吉林省智能感知与信息处理科技创新中心,长春130000
出 处:《计算机科学》2024年第S02期304-312,共9页Computer Science
基 金:国家自然科学基金青年科学基金(42204144);吉林省自然科学基金(YDZJ202101ZYTS064)。
摘 要:针对目前对细小裂缝检测能力不强、分割精度低等问题,提出了一种改进的U-Net模型来检测路面裂缝,提高检测能力和分割精度。中文设计了新的模块MSDWBlock(Multi-Scale Depthwise Separable Convolutional Block),应用在编码器和解码器部分,通过深度可分离卷积增强模型的能力,扩大模型感受野,在跳跃连接部分引入了C2G注意力机制模块,提升模型对裂缝特征的感知能力;并引入了ASPP(Atrous Spatial Pyramid Pooling)和DWT(Discrete Wavelet Transformation)。ASPP通过在多个尺度上进行操作,有助于捕捉到裂缝的特征,而DWT能够减少卷积池化过程中的裂缝空间信息损失,保留裂缝边缘信息。这种结构设计使得网络更专注于裂缝的特征,从而提升了裂缝检测的准确性。通过实验证明所提模型显示出优于U-Net,Segnet,U2net等先进模型的精确性。在CFD数据集上mIoU,F1分别达到78.51%,0.868。这些成果表明,所提方法能有效提升道路裂缝检测的性能。Aiming at the current problems of weak detection ability and low segmentation accuracy for small cracks,an improved U-Net model is proposed to detect road cracks and improve detection ability and segmentation accuracy.This paper designs a new module,multi scale depth separated convolutional block(MSDWBlock),which is applied in the encoder and decoder sections.Through its depthwise separable convolution,the model’s ability is enhanced,the model’s receptive field is expanded,and a C2G attention mechanism module is introduced in the skip connection section to enhance the model’s perception of crack features.And atrous spatial pyramid pooling(ASPP)and discrete wavelet transformation(DWT)are introduced.ASPP helps to capture the characteristics of cracks by operating at multiple scales,while DWT can reduce the loss of crack spatial information during convolutional pooling and preserve crack edge information.This structural design makes the network more focused on the characteristics of cracks,thereby improving the accuracy of crack detection.It has been demonstrated through experiments that the accuracy of the proposed model is better than that of advanced models such as U-Net,Segnet,and U2net.On the CFD dataset,mIoU and F1 reaches 78.51%and 0.868 respectively.These results indicate that the proposed method can effectively improve the perfor-mance of road crack detection.
关 键 词:裂缝检测 U-Net神经网络 深度可分离卷积 注意力机制 空间金字塔 小波变换
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.150.27