一种基于深度自编码器的大规模MIMO系统室外CSI反馈方法  

Method of Outdoor CSI Feedback for Massive MIMO Systems Based on Deep Autoencoder

在线阅读下载全文

作  者:陈锰 钱蓉蓉 朱雨佳 黄振国 CHEN Meng;QIAN Rongrong;ZHU Yujia;HUANG Zhenguo(School of Information,Yunnan University,Kunming 650500,China)

机构地区:[1]云南大学信息学院,昆明650500

出  处:《计算机科学》2024年第S02期669-674,共6页Computer Science

基  金:国家自然科学基金青年科学基金(61701433);云南省科技厅面上项目(2018FB099)。

摘  要:在室外场景高倍压缩下,针对大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统中大多数现有信道状态信息(Channel State Information,CSI)反馈方法重建精度低、复杂度较高的问题,提出了一种基于深度自编码器的CSI压缩反馈方法。该方法首先在编码器采用卷积神经网络提取原始CSI的特征信息;然后将全连接网络压缩为低维码字反馈回解码器;最后考虑到室外环境的CSI空间模式复杂、高倍压缩下信息损失较多,在解码器的残差网络中使用并行多分辨率卷积网络与具有丰富神经元的全连接网络对接收到的特征码字进行重建,以此增强所提方法的重建能力与泛化能力。实验结果表明,所提方法的重建质量在不同压缩比下均有显著提升。In outdoor scenarios with high compression,aiming at the problems of low accuracy and high complexity of reconstruction of most existing channel state information(CSI)feedback methods in massive multiple-input multiple-output(MIMO)systems,a deep autoencoder-based CSI compression feedback method is proposed.The method firstly uses a convolutional neural network in the encoder to extract the feature information of the original CSI,and then uses a fully connected network to compress it into a low-dimensional codeword for feedback to the decoder.Considering that the spatial pattern of CSI in outdoor environments is more complicated,and the loss of information is more at high compression,the decoder employs parallel multi-resolution convolutional networks and fully connected networks in a residual structure to reconstruct the received feature codewords.This design enhances the reconstruction and generalization capabilities of the proposed method.Experimental results show that the reconstruction quality of the proposed method is significantly improved at different compression ratios.

关 键 词:大规模MIMO CSI反馈 深度自编码器 室外场景 高倍压缩 

分 类 号:TN925[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象