检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许文韬 王斌君[1] 朱莉欣[2] 王晗旭 龚颖 XU Wentao;WANG Binjun;ZHU Lixin;WANG Hanxu;GONG Ying(College of Information and Cyber Security,People’s Public Security University of China,Beijing 100038,China;Suzhou Institute of Information Security Law,Xi’an Jiaotong University,Suzhou,Jiangsu 215123,China)
机构地区:[1]中国人民公安大学信息网络安全学院,北京100038 [2]西安交通大学苏州信息安全法学所,江苏苏州215123
出 处:《计算机科学》2024年第S02期866-874,共9页Computer Science
基 金:国家社会科学基金重点项目(20AZD114)
摘 要:联邦学习易受到基于模型替换的后门攻击。针对目前后门检测方法效果不佳的问题,提出横向联邦学习后门的多方共治防范策略,旨在建立联邦学习中心服务器与客户端共治机制,从而在不破坏数据隐私与主任务性能的前提下有效检测并防范模型中的后门。该策略涵盖浅层后门扫描、深层后门检测和模型修复等内容,均由客户端在中心服务器的协同下完成。其中,浅层后门扫描是一种轻量级的实时后门检测方案,其并不显著增加时间开销。该方案由客户端捕捉聚合后模型参数的异常变化,并向中心服务器报告。当报告数达到设定的阈值时,中心服务器启动深层后门检测,各客户端会暂停联邦学习进程,进行深度检测,以确定模型中的神经元是否受到后门攻击的影响而表现异常。若存在异常,各客户端采用良性模型与受攻击模型拼接的方法,将模型恢复至良性状态,并将深层后门检测的结果以及模型修复方案提交至中心服务器,由中心服务器决定最终修复方案,从而彻底清除后门。实验结果表明,该策略可以有效地检测并清除联邦学习模型中存在的后门,为横向联邦学习的安全运行保驾护航。Federated learning is susceptible to backdoor attacks based on model replacement.In response to the poor performance of current backdoor detection methods,multi-party co-governance prevention strategy is proposed.The aim is to establish a co-go-vernance mechanism between the federated learning center server and the client,so as to effectively detect and prevent backdoors in the model without compromising data privacy and main task performance.This strategy covers shallow backdoor scanning,deep backdoor detection,and model repair,all of which are completed by the client in collaboration with the central server.Among them,shallow backdoor scanning is a lightweight real-time backdoor detection scheme that does not significantly increase time overhead.This scheme captures abnormal changes in the aggregated model parameters by the client and reports them to the central server.When the number of reports reaches the set threshold,the central server initiates deep backdoor detection,and each client pauses the federated learning process for deep detection to determine whether the neurons in the model are affected by backdoor attacks and exhibit abnormalities.If there are anomalies,each client adopts a method of concatenating a benign model and an attacked model to restore the model to a benign state,and submits the results of deep backdoor detection and model repair plans to the central server.It is up to the central server to decide the final repair plan,thereby thoroughly clearing the backdoor.Experimental results show that this strategy can effectively detect and remove backdoors in the federated learning model,ensuring the safe operation of horizontal federated learning.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.68.71