我国服装零售企业数据驱动型商业模式构建研究  

Research on the Construction of Data-Driven Business Models for Clothing Retail Enterprises in China

在线阅读下载全文

作  者:王保鲁[1] 吕洁 梁钰 Wang Baolu;Lyu Jie;Liang Yu(School of Fashion Accessory,Beijing Institute of Fashion Technology,Beijing,100029)

机构地区:[1]北京服装学院服装艺术与工程学院,北京100029

出  处:《中国商论》2024年第21期13-16,共4页China Journal of Commerce

基  金:北京市教育委员会科学研究计划项目资助(SM202110012004);北京市优秀青年人才培育计划(BPHR202203069)。

摘  要:为更好地指导我国服装零售企业构建数据驱动型商业模式,本文以数据驱动型商业模式构建蓝图为指引,对大数据在服装行业内应用的相关文献资料进行分析。借助NVivo软件,完成574个节点编码,以此生成37个初始范畴、15个主范畴和6个核心范畴,并构建了以预期目标、输出内容、数据来源、数据处理、盈利方式及困难点为核心的服装零售企业数据驱动型商业模式构建模型。研究发现,企业以优化供应链与业务管理为目标,通过对内外部数据的分析处理,实现精准目标定位和产品输出,并通过精准营销、个性化营销以及体验营销实现大数据环境下的企业盈利。同时,大数据意识不足、人才缺失、应用困难以及数据安全隐患等,影响企业向数据驱动型商业模式转变。据此,本文提出相关建议对策。To better guide Chinese apparel retail enterprises in building data-driven business models,with the blueprint for the construction of a data-driven business model as a guideline,the paper carries out grounded theory analysis of relevant literature on the application of big data within the clothing industry.With the help of NVivo software,574 node coding were completed,thus generating 37 initial categories,15 main categories,and 6 core categories.A data-driven business model of clothing retail enterprises was constructed with expected goals,output content,data sources,data processing,profit methods,and difficulties as the core.It was found that enterprises aim to optimize their supply chain and business management,realize accurate target positioning and product output by analyzing and processing internal and external data,and achieve profitability in the big data environment through precision marketing,personalized marketing,and experiential marketing.Additionally,a lack of awareness of big data,talent shortages,application challenges,and data security risks impact enterprises'transition to data-driven business models.Accordingly,this paper proposes relevant recommendations and countermeasures.

关 键 词:数据驱动 商业模式 大数据 服装零售 企业转型 

分 类 号:F724.2[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象