检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晓虎 欧科宏 游鑫 黄嘉懿 ZHANG Xiaohu;OU Kehong;YOU Xin;HUANG Jiayi(College of Electrical and information Engineering,Hunan University of Technology,Zhuzhou 412000,China)
机构地区:[1]湖南工业大学电气与信息工程学院,湖南株洲412000
出 处:《电工技术》2024年第19期17-22,共6页Electric Engineering
基 金:国家重点研发计划项目(编号2022YFE0105200)。
摘 要:针对人工神经网络参数随机初始化给短期电力负荷预测带来的不足,提出一种基于改进北方苍鹰算法(Improved Northern Goshawk Optimization,INGO)优化时间卷积神经网络(Temporal Convolutional Networks,TCN)融合注意力机制(Attention)的短期负荷预测方法。首先采用多策略改进北方苍鹰算法,通过基准函数测试改进前后算法的性能,表明INGO算法具有更好的寻优能力。最后,引入INGO算法对TCN进行优化,建立INGO-TCN-Attention短期电力负荷预测模型。通过实例分析和实验对比,表明INGO-TCN-Attention模型的稳定性和预测精度均优于其他模型。Aiming at addressing the shortcomings of short-term power load forecasting caused by random initialization of artificial neural network parameters,this work studied a short-term load forecasting method utilizing the temporal convolutional network optimized by improved northern goshawk optimization(INGO)and hybridized with the attention mechanism.The multi-strategy algorithm was used to improve the northern goshawk algorithm,and a test by benchmark function verified the better optimization performance of the improved algorithm.Then the INGO algorithm was further introduced to TCN,and the INGO-TCN-Attention short-term power load forecasting model was established,which in the subsequent comparative experiment exhibited stability and prediction accuracy superior to other models.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117