检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程文冬[1] 刘超 权程 叶旺盛 王洋 CHENG Wendong;LIU Chao;QUAN Cheng;YE Wangsheng;WANG Yang(School of Mechatronic Engineering,Xi’an Technological University,Xi’an 710021,China)
出 处:《西安工业大学学报》2024年第5期647-655,共9页Journal of Xi’an Technological University
基 金:国家自然科学基金项目(52302504);陕西省自然科学基础研究计划项目(2022JQ-488);陕西省大学生创新创业训练计划项目(S202310702077)。
摘 要:为了解决当前作业人员着装规范性(DSOP)检测存在小目标识别率低、环境鲁棒性差等问题。针对DSOP检测中小目标、多重叠、背景复杂等特点,提出基于改进YOLO v5n的算法来实现DSOP检测,首先以E-YOLO架构优化设计提升特征提取和融合效能;其次以Dynamic Head提升多尺度、多视角下DSOP检测精度;最后以OTA和Soft-NMS算法来改善目标堆叠及背景构图复杂的不利影响。实验结果表明:相较YOLO v5n算法,参数量和浮点运算量分别下降31%和16%,精度值提升了0.2%,召回率值提升了1.7%,mAP@0.5:0.95值提升5.9%。可以为各类复杂场景的着装规范性检测提供可行的技术参考。To solve the problems such as low recognition rate of small targets and poor environmental robustness in the current DSOP detection methods,the paper presents an algorithm based on YOLO v5n for DSOP detection characterized by small targets,multiple overlaps and complex backgrounds.Firstly,the E YOLO architecture is optimized to enhance feature extraction and fusion efficiency;secondly,the Dynamic Head is adopted to improve DSOP detection accuracy across multiple scales and perspectives;lastly,the OTA and Soft-NMS algorithms are employed to mitigate the adverse effects of target stacking and complex background composition.The experimental results demonstrates that,compared with with YOLO v5n,for the improved detection method,the parameters and GFLOPs are reduced by 31%and 16%,the accuracy and recall rate are improved by 0.2%and 1.7%,and mAP@0.5:0.95 is increased by 5.9%.This study can provide feasible technical reference for DSOP detection in complex scenarios.
关 键 词:DSOP检测 YOLO v5n效能提升 Dynamic Head OTA Soft-NMS
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49