中医面诊信息的临床判读规范研究  

Study on Clinical Interpretation Norms of Traditional Chinese Medicine Facial Diagnosis Information

在线阅读下载全文

作  者:朱蓉蓉 钱鹏[1] 李福凤[1] ZHU Rongrong;QIAN Peng;LI Fufeng(School of Traditional Chinese Medicine,Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China)

机构地区:[1]上海中医药大学中医学院,上海201203

出  处:《中华中医药学刊》2024年第11期22-25,I0010,共5页Chinese Archives of Traditional Chinese Medicine

基  金:国家重点研发计划中医药现代化研究重点专项(2018YFC1707600);国家自然科学基金面上项目(81774205)。

摘  要:中医面诊信息临床判读标准规范研究是中医面诊智能化发展的基兆。研究人员根据判读规范对面诊图像进行有效标注并获得可靠的、高质量的判读结果,有助于后续的面诊图像智能识别处理技术的研究。围绕面诊图像标注的医学判读规则,研究面诊图像采集规范,制定了面诊判读量表并进行了验证,表明规范化后的中医望诊信息具有较好的准确性和一致性。面诊信息的判读标注规范研究是面诊标准化研究的重要基础,推动完善面诊标准体系,为发展新时代中医药传承创新事业添砖加瓦。The research on the clinical interpretation standards and norms of traditional Chinese medicine facial diagnosis information is the foundation for the intelligent development of traditional Chinese medicine facial diagnosis.Researchers effectively annotate facial diagnosis images according to interpretation standards and obtain reliable and high-quality interpretation results,which will contribute to the research of intelligent recognition and processing technology for facial diagnosis images in the future.This article focused on the medical interpretation rules for facial diagnosis image annotation,studied the collection standards of facial diagnosis images,develops facial diagnosis interpretation scale,and verified it.It shows that the standardized traditional Chinese medicine observation information has good accuracy and consistency.The research on the interpretation,annotation,and standardization of facial diagnosis information is an important foundation for the standardization of facial diagnosis research,promoting the improvement of the standard system for facial diagnosis and contributing to the development of traditional Chinese medicine inheritance and innovation in the new era.

关 键 词:面诊 标注规范 标准 面诊判读量表 

分 类 号:R241[医药卫生—中医诊断学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象