基于广域测量的光伏发电参数在线辨识方法研究  

Research on online identification method of photovoltaic power generation parameters based on wide area measurement system

在线阅读下载全文

作  者:张浩 何东昊 王国权 ZHANG Hao;HE Donghao;WANG Guoquan(Henan Hezhong Power Technology Co.,Ltd.,Zhengzhou 450006,China)

机构地区:[1]河南合众电力技术有限公司,郑州450006

出  处:《电力需求侧管理》2024年第6期49-54,共6页Power Demand Side Management

基  金:国网公司科技项目(521702230004)。

摘  要:广域测量系统(wide area measurement system,WAMS)及同步相量测量单元(phasor measurement unit,PMU)根据相关要求已在40MW以上新能源场站广泛部署,通过其高精度采样得到的实时数据为新能源机组的动态建模和辨识提供了条件。利用PSD-BPA暂态稳定程序用户手册所给出的标准单元建立光伏发电系统参数机电暂态模型。基于预测误差采用闭环辨识方法,利用WAMS数据对光伏发电系统进行参数在线辨识与分析,在此基础上提出结合随机时间序列预测(box-jenkins)模型预测误差方法来识别参数唯一性,通过仿真平台构建光伏发电系统模型,对河南电网光伏电站实测WAMS数据进行拟合分析,充分验证了所提方法对于闭环辨识的有效性。The wide area measurement system(WAMS)and synchronous phasor measurement unit(PMU)have been widely deployed in new energy stations above 40 MW according to relevant requirements.Real-time data obtained through their high-precision sampling pro-vides conditions for the dynamic modeling and identification of new energy units.Standard units provided in the PSD-BPA transient stabili-ty program user manual is used to establish a parameter electromechanical transient model for photovoltaic power generation systems.Based on prediction errors,a closed-loop identification method uses WAMS data to identify and analyze the parameters of the photovoltaic power generation system online.On this basis,a prediction error method combined with the box-jenkins(BJ)model is proposed to identify the uniqueness of parameters.A photovoltaic power generation system model is constructed through a simulation platform,and the mea-sured WAMS data of the photovoltaic power station in Henan power grid is fitted and analyzed,fully verifying the effectiveness of the pro-posed method for closed-loop identification.

关 键 词:广域测量系统 闭环辨识 光伏发电 预报误差 

分 类 号:TM615[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象