机构地区:[1]廊坊市人民医院急救科,河北廊坊065000 [2]三门峡中心医院呼吸科,河南三门峡472000 [3]廊坊市第四人民医院呼吸内科,河北廊坊065000
出 处:《中国急救复苏与灾害医学杂志》2024年第11期1463-1467,共5页China Journal of Emergency Resuscitation and Disaster Medicine
基 金:河北省卫生健康委员会项目(编号:20221593)。
摘 要:目的 分析重症急性呼吸患者30 d预后不良影响因素及风险预测。方法 回顾性收集2020年7月—2023年7月期间河北省廊坊市人民医院收治的重症急性呼吸衰竭患者110例,按照30 d预后情况将其分为死亡组(n=34)和存活组(n=76),比较两组的一般资料、入ICU首日急性生理与慢性健康评估评分Ⅱ(APACHEⅡ)、血清肺表面活性蛋白D(SP-D)、内皮素-1(ET-1)、血管细胞黏附分子-1(VCAM-1)、血清toll样受体4(TLR4)水平,采用二元Logistic回归分析影响重症急性呼吸衰竭患者30 d预后的相关因素,根据Logistic回归结果构建预测模型,并建立ROC曲线分析预测价值。结果 死亡组血清SP-D、ET-1、VCAM-1、TLR4水平高于存活组,差异有统计学意义(P<0.05);存活组和死亡组的性别、合并基础疾病情况、肺功能障碍程度、BMI、体温、呼吸、脉搏无显著差异(P>0.05),死亡组的年龄、APACHEⅡ评分高于存活组,且差异具有统计学意义(P<0.05);二元Logistic回归分析显示:APACHEⅡ评分(OR=1.253,95%CI=1.052~1.493)、血清SP-D(OR=1.137,95%CI=1.033~1.251)、ET-1(OR=1.200,95%CI=1.029~1.399)、VCAM-1(OR=1.244,95%CI=1.065~1.453)、TLR4水平(OR=1.254,95%CI=1.044~1.507)是影响ARF患者死亡的独立危险因素(P<0.05);根据上述二元Logistic回归分析结果,构建ARF患者死亡的风险预测模型,模型方程=0.026×APACHEⅡ评分+0.128×SP-D+0.182×ET-1+0.218×VCAM-1+0.227×TLR4-100.025。建立ROC曲线分析各指标对ARF患者死亡的预测价值发现:APACHEⅡ评分、SP-D、ET-1、VCAM-1、TLR4及联合预测的曲线AUC分别为0.830、0.878、0.697、0.851、0.772、0.954,提示均对ARF患者死亡有一定预测价值。取cut-off值时,APACHEⅡ评分、血清SP-D、血清ET-1、血清VCAM-1、血清TLR4水平及联合预测相应的敏感度分别为0.735、0.824、0.765、0.912、0.794、0.971,特异度分别为0.829、0.789、0.605、0.645、0.711、0.803,且联合的AUC高于单个指标(P<0.05)。结论 重症急症呼吸衰Objective To analyze the adverse prognostic factors and risk prediction of severe acute respiratory patients after 30 days.Methods A retrospective study was conducted on 110 patients with severe acute respiratory failure admitted to Langfang People's Hospital from July 2027 to July 2023.They were divided into a death group(n=34) and a survival group(n=76) based on their 30-day prognosis.The general information,acute physiology and chronic health evaluation score Ⅱ(APACHE Ⅱ),serum pulmonary surfactant protein D(SP-D),and acute physiology and chronic health evaluation scoreⅡ(APACHE Ⅱ) on the first day of admission to the ICU were compared between the two groups Endothelin-1(ET-1),Vascular cell adhesion molecule-1(VCAM-1),and serum toll like receptor 4(TLR4) levels were analyzed using binary Logistic regression to identify the relevant factors affecting the 30-day prognosis of patients with severe acute respiratory failure.A predictive model was constructed based on the results of Logistic regression and the predictive value of ROC curve analysis was established.Results The serum levels of SP-D,ET-1,VCAM-1,and TLR4 in the death group were higher than those in the survival group,with statistical significance(P<0.05);there was no significant difference in gender,comorbidities,degree of pulmonary dysfunction,BMI,body temperature,respiration,and pulse between the survival group and the death group(P>0.05).The age and APACHE Ⅱ score of the death group were higher than those of the survival group,and the difference was statistically significant(P<0.05);Binary Logistic regression analysis showed that APACHE Ⅱscore(OR=1.253,95% CI=1.052-1.493),serum SP-D(OR=1.137,95% CI=1.033-1.251),ET-1(OR=1.200,95% CI=1.029-1.399),VCAM-1(OR=1.244,95% CI=1.065-1.453),and TLR4 level(OR=1.254,95% CI=1.044-1.507) were high-risk factors affecting mortality in ARF patients(P<0.05);According to the above binary Logistic regression analysis results,the risk prediction model of ARF patients' death was constructed,and the model equation
关 键 词:急性呼吸衰竭 APACHEⅡ评分 Logistic回归分析 ROC曲线分析 风险预测
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...