Automatically identifying imperfections and attacks in practical quantum key distribution systems via machine learning  

在线阅读下载全文

作  者:Jiaxin XU Xiao MA Jingyang LIU Chunhui ZHANG Hongwei LI Xingyu ZHOU Qin WANG 

机构地区:[1]Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China [2]Telecommunication and Networks,National Engineering Research Center,Nanjing University of Posts and Telecommunications,Nanjing 210023,China [3]Henan Key Laboratory of Quantum Information and Cryptography,Strategic Support Force Information Engineering University,Zhengzhou 450001,China

出  处:《Science China(Information Sciences)》2024年第10期355-368,共14页中国科学(信息科学)(英文版)

基  金:supported by Industrial Prospect and Key Core Technology Projects of Jiangsu Provincial Key R&D Program(Grant No.BE2022071);National Natural Science Foundation of China(Grant Nos.12074194,12104240,62101285);Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300701);Natural Science Foundation of Jiangsu Province(Grant Nos.BK20192001,BK20210582);Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.21KJB140014);Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_1030)。

摘  要:The realistic security of quantum key distribution(QKD)systems is currently a hot research topic in the field of quantum communications.There are always defects in practical devices,and eavesdroppers can make use of the security risk points of various devices to obtain key information.To date,current types of security analysis tend to analyze each security risk point individually,thereby posing great challenges for the overall security evaluation of QKD systems.In this paper,for the first time,we employ machine learning algorithms to identify the defects of different devices and certain attacks in real time,with an accuracy of 98%.It provides a novel solution for the practical security evaluation of QKD systems,thereby addressing the bottleneck problem of multiple risk points being difficult to address simultaneously in QKD systems,thus paving the way for the future large-scale application of quantum communication networks.

关 键 词:quantum key distribution device imperfections eavasdropping attacks real-time detection machine learning algorithms 

分 类 号:O413[理学—理论物理] TN918.4[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象