检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qianqian Guo Changchang Xi
机构地区:[1]School of Mathematical Sciences,Capital Normal University,Beijing 100048,China [2]School of Mathematical Sciences,Laboratory of Mathematics and Complex Systems(Ministry of Education of China),Beijing Normal University,Beijing 100875,China [3]School of Mathematics and Statistics,Shaanxi Normal University,Xi'an 710062,China
出 处:《Science China Mathematics》2024年第11期2453-2484,共32页中国科学(数学英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos.12031014 and 12226314)。
摘 要:Under semi-weak and weak compatibility conditions of bimodules,we establish necessary and sufficient conditions of Gorenstein-projective modules over rings of Morita contexts with one bimodule homomorphism zero.This extends greatly the results on triangular matrix Artin algebras and on Artin algebras of Morita contexts with two bimodule homomorphisms zero in the literature,where only sufficient conditions are given under a strong assumption of compatibility of bimodules.An application is provided to describe Gorenstein-projective modules over noncommutative tensor products arising from Morita contexts.Our results are proved under a general setting of noetherian rings and modules instead of Artin algebras and modules.
关 键 词:Gorenstein-projective module noetherian ring noncommutative tensor product totally exact complex weakly compatible bimodule
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7