TPpred-SC:multi-functional therapeutic peptide prediction based on multi-label supervised contrastive learning  

在线阅读下载全文

作  者:Ke YAN Hongwu LV Jiangyi SHAO Shutao CHEN Bin LIU 

机构地区:[1]School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081,China

出  处:《Science China(Information Sciences)》2024年第11期132-143,共12页中国科学(信息科学)(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.62325202,62102030,U22A2039);Beijing Natural Science Foundation(Grant No.L232067)。

摘  要:Therapeutic peptides contribute significantly to human health and have the potential for personalized medicine.The prediction for the therapeutic peptides is beneficial and emerging for the discovery of drugs.Although several computational approaches have emerged to discern the functions of therapeutic peptides,predicting multi-functional therapeutic peptide types is challenging.In this research,a novel approach termed TPpred-SC has been introduced.This method leverages a pretrained protein language model alongside multi-label supervised contrastive learning to predict multi-functional therapeutic peptides.The framework incorporates sequential semantic information directly from large-scale protein sequences in TAPE.Then,TPpred-SC exploits multi-label supervised contrastive learning to enhance the representation of peptide sequences for imbalanced multi-label therapeutic peptide prediction.The experimental findings demonstrate that TPpred-SC achieves superior performance compared to existing related methods.To serve our work more efficiently,the web server of TPpred-SC can be accessed at http://bliulab.net/TPpred-SC.

关 键 词:therapeutic peptide prediction multi-label classification pretrained protein language model multi-label supervised contrastive learning 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] R9[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象