检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ke YAN Hongwu LV Jiangyi SHAO Shutao CHEN Bin LIU
机构地区:[1]School of Computer Science and Technology,Beijing Institute of Technology,Beijing 100081,China
出 处:《Science China(Information Sciences)》2024年第11期132-143,共12页中国科学(信息科学)(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.62325202,62102030,U22A2039);Beijing Natural Science Foundation(Grant No.L232067)。
摘 要:Therapeutic peptides contribute significantly to human health and have the potential for personalized medicine.The prediction for the therapeutic peptides is beneficial and emerging for the discovery of drugs.Although several computational approaches have emerged to discern the functions of therapeutic peptides,predicting multi-functional therapeutic peptide types is challenging.In this research,a novel approach termed TPpred-SC has been introduced.This method leverages a pretrained protein language model alongside multi-label supervised contrastive learning to predict multi-functional therapeutic peptides.The framework incorporates sequential semantic information directly from large-scale protein sequences in TAPE.Then,TPpred-SC exploits multi-label supervised contrastive learning to enhance the representation of peptide sequences for imbalanced multi-label therapeutic peptide prediction.The experimental findings demonstrate that TPpred-SC achieves superior performance compared to existing related methods.To serve our work more efficiently,the web server of TPpred-SC can be accessed at http://bliulab.net/TPpred-SC.
关 键 词:therapeutic peptide prediction multi-label classification pretrained protein language model multi-label supervised contrastive learning
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] R9[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.187.74