检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王圣 周斌 屈加豹 李建晖 余历钊 吴鑫[5] 杨迎 徐鑫 伯鑫 WANG Sheng;ZHOU Bin;QU Jia-Bao;LI Jian-Hui;YU Li-Zhao;WU Xin;YANG Ying;XU Xin;BO Xin(State Key Laboratory of Low-carbon Smart Coal-fired Power Generation and Ultra-clean Emission,China Energy Science and Technology Research Institute Co.,Ltd.,Nanjing 210023,China;Artificial Intelligence applied Technology Research Center,National Institute of Clean-and-Low-Carbon Energy,Beijing 102211,China;State Environmental Protection Key Laboratory of Numerical Modeling for Environment Impact Assessment,Ministry of Ecology and Environment,Beijing 100012,China;Department of Environmental Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China;Linyi People's Hospital,Linyi 276000,China)
机构地区:[1]国家能源集团科学技术研究院有限公司,低碳智能燃煤发电与超净排放全国重点实验室,江苏南京210023 [2]北京低碳清洁能源研究院,人工智能应用技术研究中心,北京102211 [3]生态环境部,国家环境保护环境影响评价数值模拟重点实验室,北京100012 [4]北京化工大学环境科学与工程系,北京100029 [5]临沂市人民医院,山东临沂276000
出 处:《中国环境科学》2024年第11期5990-5998,共9页China Environmental Science
基 金:低碳智能燃煤发电与超净排放全国重点实验室开放课题(D2022FK075);中央高校基本科研业务费资助项目(buctrc202133)。
摘 要:本研究以火力发电大省山东省为例,计算了碳达峰、碳中和情景下火电行业大气污染物排放量,采用CALPUFF模式模拟了不同情景下山东省火电行业SO_(2)、NO_(x)、PM_(10)及PM_(2.5)污染贡献情况.结果显示,在碳达峰情景下,山东省火电行业SO_(2)、NO_(x)、PM_(10)及PM_(2.5)排放量与2018年基准情景相比,分别减少了2483.42,23448.71,364.31,341.01t,火电行业排放的SO_(2)、NO_(x)、PM_(10)及PM2.5对各城市贡献浓度较2018年基准情景浓度分别降低了0.22%~26.61%、0.66%~51.21%、0.63%~23.82%和4.36%~24.38%.在碳中和情景下,山东省火电行业SO_(2)、NO_(x)、PM_(10)及PM_(2.5)排放量与2018年基准情景相比,分别减少了10947.71,44358.58,1606.00,1503.29t,火电行业排放的SO_(2)、NO_(x)、PM_(10)及PM_(2.5)对各城市贡献浓度较2018年基准情景浓度分别降低了22.66%~44.14%、7.10%~54.37%、23.08%~42.02%和27.20%~42.44%.在碳达峰、碳中和情景下,火力发电仍是山东省能源安全和稳定供应的“压舱石”,减污降碳协同控制对山东火电行业至关重要.This study took Shandong Province,a major province of thermal power generation,as an example,calculated the emissions of atmospheric pollutants from thermal power under the scenario of carbon peaking and carbon neutrality,and adopted the CALPUFF model to simulate the contribution of SO_(2),NO_(x),PM_(10),and PM_(2.5)pollution from the thermal power industry in Shandong under different scenarios.The results show that under the carbon peak scenario,the emissions of SO_(2),NO_(x),PM_(10),and PM_(2.5)in the Shandong thermal power industry decreased by 2483.42,23448.71,364.31,and 341.01t,respectively,compared with the baseline scenario in 2018.The contribution concentration of thermal power to SO_(2),NO_(x),PM_(10),and PM_(2.5)in each city decreased by 0.22%~26.61%,0.66%~51.21%,0.63%~23.82%,and 4.36%~24.38%,respectively,compared with the baseline scenario concentration in 2018.Under the carbon neutral scenario,SO_(2),NO_(x),PM_(10),and PM_(2.5)in the thermal power industry in Shandong Province SO_(2),NO_(x),PM_(10),and PM_(2.5)emissions decreased by 10947.71,44358.58,1606.00,1503.29t,respectively,compared with the 2018 base scenario.The contribution concentration of thermal power to SO_(2),NO_(x),PM_(10),and PM_(2.5)in each city decreased by 22.66%~44.14%,7.10%~54.37%,23.08%~42.02%,and 27.20%~42.44%,respectively,compared with the baseline scenario concentration in 2018.Under the scenario of carbon peak and carbon neutrality,thermal power generation is still the"ballast stone"for energy security and stable supply in Shandong Province,and the collaborative control of pollution reduction and carbon reduction is crucial for Shandong thermal power industry.
关 键 词:火力发电 碳达峰 碳中和 CALPUFF 污染贡献
分 类 号:X51[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.255.50