融合改进鲸鱼算法的绿色建筑综合能源调度策略电气设计  

Electrical Design of Green Building Comprehensive Energy Scheduling Strategy Integrating Improved Whale Algorithm

在线阅读下载全文

作  者:马新茹 王萍 MA Xinru;WANG Ping(State grid Handan Power Supply Company,Handan 056001,China)

机构地区:[1]国网河北省电力有限公司邯郸供电分公司,河北邯郸056001

出  处:《现代建筑电气》2024年第10期15-20,共6页Modern Architecture Electric

摘  要:针对以光伏、风电等新能源建筑系统中由于太阳能、风能等新型能源存在波动性而引起的绿色建筑综合能源系统优化调度效率降低、调度准确率不高等问题,设计了一种融合鲸鱼算法和深度确定性策略的改进鲸鱼算法综合能源优化调度策略。根据绿色建筑综合能源的系统结构建立系统的基本数学模型,并选择系统的状态变量作为鲸鱼算法输入层的初始变量,根据能源结构分别建立输入层、隐藏层以及输出层的数学运算模型,提升了综合能源系统对特定符合的优化调度准确率。引入深度确定性策略,对鲸鱼算法中的迭代因子进行自适应整定,提高鲸鱼算法的收敛速度与算法精度,进一步提升了鲸鱼算法对综合能源系统的调度效率。在MATLAB中输入绿色建筑综合能源系统中的各类能源数据,并引入改进鲸鱼算法、传统鲸鱼算法以及BP神经网络算法进行调度效率与特定负荷调度准确率对比,结果显示改进鲸鱼算法的调度效率可达95.63%,调度准确率可达95.81%,为综合能源调度优化奠定了有利基础。Aiming at the problems of reduced efficiency and low accuracy in the optimization and scheduling of green building comprehensive energy systems caused by the volatility of new energy sources such as solar and wind power in photovoltaic and wind power building systems,an improved whale algorithm comprehensive energy optimization and scheduling strategy integrating whale algorithm and deep determinism strategy is designed.Based on the system structure of green building comprehensive energy,a basic mathematical model of the system is established,and the state variables of the system are selected as the initial variables of the Whale Algorithm input layer.According to the energy structure,mathematical operation models for the input layer,hidden layer,and output layer are established,which improves the accuracy of the comprehensive energy system in optimizing scheduling for specific requirements.Introducing a deep deterministic strategy to adaptively tune the iteration factors in the Whale Algorithm improves its convergence speed and accuracy,further enhancing its scheduling efficiency for integrated energy systems.Input various energy data from the green building comprehensive energy system in MATLAB,and introduce improved whale algorithm,traditional whale algorithm,and BP neural network algorithm to compare scheduling efficiency with specific load scheduling accuracy.The results show that the scheduling efficiency of the improved whale algorithm can reach 95.63%,and the scheduling accuracy can reach 95.81%,laying a favorable foundation for the optimization of comprehensive energy scheduling.

关 键 词:鲸鱼算法 深度确定性策略 综合能源系统 绿色建筑 

分 类 号:TU852[建筑科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象