Adaptive multiscale wavelet-guided periodic sparse representation for bearing incipient fault feature extraction  

在线阅读下载全文

作  者:NIU MaoGui JIANG HongKai YAO RenHe 

机构地区:[1]School of Civil Aviation,Northwestern Polytechnical University,Xi’an 710072,China

出  处:《Science China(Technological Sciences)》2024年第11期3585-3596,共12页中国科学(技术科学英文版)

基  金:supported by the National Natural Science Foundation of China (Grant No. 51875459)。

摘  要:Currently, accurately extracting early-stage bearing incipient fault features is urgent and challenging. This paper introduces a novel method called adaptive multiscale wavelet-guided periodic sparse representation(AMWPSR) to address this issue. For the first time, the dual-tree complex wavelet transform is applied to construct the linear transformation for the AMWPSR model.This transform offers superior shift invariance and minimizes spectrum aliasing. By integrating this linear transformation with the generalized minimax concave penalty term, a new sparse representation model is developed to recover faulty impulse components from heavily disturbed vibration signals. During each iteration of the AMWPSR process, the impulse periods of sparse signals are adaptively estimated, and the periodicity of the latest sparse signal is augmented using the final estimated period. Simulation studies demonstrate that AMWPSR can effectively estimate periodic impulses even in noisy environments, demonstrating greater accuracy and robustness in recovering faulty impulse components than existing techniques.Further validation through research on two sets of bearing life cycle data shows that AMWPSR delivers superior fault diagnosis results.

关 键 词:incipient fault feature extraction dual-tree complex wavelet transform generalized minimax concave penalty periodic sparse representation 

分 类 号:TH133.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象