检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐春娜 TANG Chunna(Guangdong Baiyun University,Guangzhou Guangdong 510000,China)
机构地区:[1]广东白云学院,广东广州510000
出 处:《信息与电脑》2024年第17期59-61,共3页Information & Computer
摘 要:本文探讨了深度学习技术在主机分布式集群负载均衡中的应用。通过对深度学习算法的分析,结合实际的主机集群环境,本文提出了一种基于深度学习的负载均衡策略。该策略通过对主机历史负载数据的学习,可预测未来一段时间内的负载情况,动态调整负载均衡策略,以实现集群负载的实时优化。实验结果表明,相比传统的负载均衡算法,该策略在吞吐量、响应时间等指标上都有明显的提升,证明了深度学习技术在负载均衡领域的应用价值。This paper discusses the application of deep learning technology in host distributed cluster load balancing.Based on the analysis of deep learning algorithm and combining with the actual host cluster environment,a load balancing strategy based on deep learning is proposed.By learning the historical load data of the host,the strategy predicts the load situation in the future period of time,dynamically adjusts the load balancing strategy,and realizes the real-time optimization of the cluster load.The experimental results show that compared with the traditional load balancing algorithm,this strategy has significantly improved in the throughput,response time and other indicators,which proves the application value of deep learning technology in the field of load balancing.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49