检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冒鸿宇 孙刘杰[1] 朱衍熹 Hongyu Mao;Liujie Sun;Yanxi Zhu(College of Publishing,University of Shanghai for Science and Technology,Shanghai)
机构地区:[1]上海理工大学出版学院,上海
出 处:《运筹与模糊学》2024年第5期230-237,共8页Operations Research and Fuzziology
摘 要:特定领域的数据蕴含了大量有价值的知识及关系划分,从中能正确将其进行关系划分一直是一个值得关注的话题。当前关系划分都依赖于大量样本模型进行训练得出,由于特定领域的实体数据关系样本数量较少,显然应用到特定领域中存在局限。因此本文针对该问题,提出一种基于相似度计算的实体数据关系归属方法,其中建立一个特定领域的少样本实体关系术语树,与待划分的实体数据进行相似度计算得到在树中具体位置,从而解决错误归属问题,显著减少人工管理成本,能够有效提升系统的可用性。Domain-specific data contains a large amount of valuable knowledge and relationship delineation,from which it is always a topic of interest to be able to correctly perform relationship delineation.Currently,the relationship classification relies on a large number of sample models for training,due to the small number of domain-specific entity data relationship samples,it is obvious that there are limitations in applying to specific domains.Therefore,in this paper,we propose a similarity-based relationship attribution method for entity data,in which a domain-specific entity relationship term tree with few samples is established,and the entity data to be partitioned is similarity-calculated to get the specific position in the tree,thus solving the problem of misattribution,significantly reducing the cost of manual management,and effectively improving the usability of the system.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7