检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Stephen Afrifa Vijayakumar Varadarajan Peter Appiahene Tao Zhang Richmond Afrifa
机构地区:[1]School of Electrical and Information Engineering,Tianjin University,Tianjin,300072,China [2]Department of Information Technology and Decision Sciences,University of Energy and Natural Resources,Sunyani,00233,Ghana [3]International Divisions,Ajeenkya D.Y.Patil University,Pune,412105,India [4]Business School,La Trobe University,Melbourne,Victoria,3086,Australia [5]Research Division,Swiss School of Business and Management,Geneva,1213,Switzerland [6]Department of Social Science and Geography,Aprade Senior High Technical School,Koforidua,03225,Ghana
出 处:《Computer Systems Science & Engineering》2024年第6期1625-1639,共15页计算机系统科学与工程(英文)
摘 要:Users of social networks can readily express their thoughts on websites like Twitter(now X),Facebook,and Instagram.The volume of textual data flowing from users has greatly increased with the advent of social media in comparison to traditional media.For instance,using natural language processing(NLP)methods,social media can be leveraged to obtain crucial information on the present situation during disasters.In this work,tweets on the Uttarakhand flash flood are analyzed using a hybrid NLP model.This investigation employed sentiment analysis(SA)to determine the people’s expressed negative attitudes regarding the disaster.We apply a machine learning algorithm and evaluate the performance using the standard metrics,namely root mean square error(RMSE),mean absolute error(MAE),and mean absolute percentage error(MAPE).Our random forest(RF)classifier outperforms comparable works with an accuracy of 98.10%.In order to gain a competitive edge,the study shows how Twitter(now X)data and machine learning(ML)techniques can analyze public discourse and sentiments regarding disasters.It does this by comparing positive and negative comments in order to develop strategies to deal with public sentiments on disasters.
关 键 词:Artificial intelligence natural language processing machine learning social media MULTIMEDIA DISASTER
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.171.58