Evaluating Public Sentiments during Uttarakhand Flood: An Artificial Intelligence Techniques  

在线阅读下载全文

作  者:Stephen Afrifa Vijayakumar Varadarajan Peter Appiahene Tao Zhang Richmond Afrifa 

机构地区:[1]School of Electrical and Information Engineering,Tianjin University,Tianjin,300072,China [2]Department of Information Technology and Decision Sciences,University of Energy and Natural Resources,Sunyani,00233,Ghana [3]International Divisions,Ajeenkya D.Y.Patil University,Pune,412105,India [4]Business School,La Trobe University,Melbourne,Victoria,3086,Australia [5]Research Division,Swiss School of Business and Management,Geneva,1213,Switzerland [6]Department of Social Science and Geography,Aprade Senior High Technical School,Koforidua,03225,Ghana

出  处:《Computer Systems Science & Engineering》2024年第6期1625-1639,共15页计算机系统科学与工程(英文)

摘  要:Users of social networks can readily express their thoughts on websites like Twitter(now X),Facebook,and Instagram.The volume of textual data flowing from users has greatly increased with the advent of social media in comparison to traditional media.For instance,using natural language processing(NLP)methods,social media can be leveraged to obtain crucial information on the present situation during disasters.In this work,tweets on the Uttarakhand flash flood are analyzed using a hybrid NLP model.This investigation employed sentiment analysis(SA)to determine the people’s expressed negative attitudes regarding the disaster.We apply a machine learning algorithm and evaluate the performance using the standard metrics,namely root mean square error(RMSE),mean absolute error(MAE),and mean absolute percentage error(MAPE).Our random forest(RF)classifier outperforms comparable works with an accuracy of 98.10%.In order to gain a competitive edge,the study shows how Twitter(now X)data and machine learning(ML)techniques can analyze public discourse and sentiments regarding disasters.It does this by comparing positive and negative comments in order to develop strategies to deal with public sentiments on disasters.

关 键 词:Artificial intelligence natural language processing machine learning social media MULTIMEDIA DISASTER 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象