An Enhanced Integrated Method for Healthcare Data Classification with Incompleteness  

在线阅读下载全文

作  者:Sonia Goel Meena Tushir Jyoti Arora Tripti Sharma Deepali Gupta Ali Nauman Ghulam Muhammad 

机构地区:[1]Electrical and Electronics Engineering(EEE)Department,Maharaja Surajmal Institute of Technology,New-Delhi,110058,India [2]Information Technology(IT)Department,Maharaja Surajmal Institute of Technology,New-Delhi,110058,India [3]Chitkara University Institute of Engineering and Technology,Chitkara University,Rajpura,Punjab,140401,India [4]Department of Computer Science and Engineering,Yeungnam University,Gyeongsan-si,38541,Republic of Korea [5]Department of Computer Engineering,College of Computer and Information Sciences,King Saud University,Riyadh,11421,Saudi Arabia

出  处:《Computers, Materials & Continua》2024年第11期3125-3145,共21页计算机、材料和连续体(英文)

基  金:supported by the Researchers Supporting Project number(RSP2024R 34),King Saud University,Riyadh,Saudi Arabia。

摘  要:In numerous real-world healthcare applications,handling incomplete medical data poses significant challenges for missing value imputation and subsequent clustering or classification tasks.Traditional approaches often rely on statistical methods for imputation,which may yield suboptimal results and be computationally intensive.This paper aims to integrate imputation and clustering techniques to enhance the classification of incomplete medical data with improved accuracy.Conventional classification methods are ill-suited for incomplete medical data.To enhance efficiency without compromising accuracy,this paper introduces a novel approach that combines imputation and clustering for the classification of incomplete data.Initially,the linear interpolation imputation method alongside an iterative Fuzzy c-means clustering method is applied and followed by a classification algorithm.The effectiveness of the proposed approach is evaluated using multiple performance metrics,including accuracy,precision,specificity,and sensitivity.The encouraging results demonstrate that our proposed method surpasses classical approaches across various performance criteria.

关 键 词:Incomplete data nearest neighbor linear interpolation IMPUTATION CLUSTERING CLASSIFICATION 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象