A Dynamic YOLO-Based Sequence-Matching Model for Efficient Coverless Image Steganography  

在线阅读下载全文

作  者:Jiajun Liu Lina Tan Zhili Zhou Weijin Jiang Yi Li Peng Chen 

机构地区:[1]School of Computer Science,Hunan University of Technology and Business,Changsha,410205,China [2]Institute of Artificial Intelligence,Guangzhou University,Guangzhou,510555,China

出  处:《Computers, Materials & Continua》2024年第11期3221-3240,共20页计算机、材料和连续体(英文)

摘  要:Many existing coverless steganography methods establish a mapping relationship between cover images and hidden data.One issue with these methods is that as the steganographic capacity increases,the number of images stored in the database grows exponentially.This makes it challenging to build and manage a large image database.To improve the image library utilization and anti-attack capability of the steganography system,we propose an efficient coverless scheme based on dynamically matched substrings.We utilize You Only Look Once(YOLO)for selecting optimal objects and create a mapping dictionary between these objects and scrambling factors.Using this dictionary,each image is effectively assigned to a specific scrambling factor,which is then used to scramble the receiver’s sequence key.To achieve sufficient steganography capability with a limited image library,all substrings of the scrambled sequences have the potential to hide data.After matching the secret information,the ideal number of stego images will be obtained from the database.According to experimental results,this technology outperforms most previous works in terms of data load,transmission security,and hiding capacity.It can recover an average of 79.85%of secret information under typical geometric attacks,and only approximately 200 random images are needed to achieve a capacity of 19 bits per image.

关 键 词:Coverless STEGANOGRAPHY object detection YOLO 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象