Reduction of High-Frequency Core Loss of a Fe_(77.2)Si_(11)B_(8.5)Cu_(0.8)Nb_(2.5)Soft Magnetic Nanocrystalline Alloy by Minor Alloying  

在线阅读下载全文

作  者:Shushen Guo Yanhui Li Yibing Zhang Lu Yang Wei Zhang 

机构地区:[1]Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),School of Materials Science and Engineering,Dalian University of Technology,Dalian,116024,China [2]Southwest Institute of Applied Magnetics,Mianyang,621000,China

出  处:《Acta Metallurgica Sinica(English Letters)》2024年第11期1984-1992,共9页金属学报(英文版)

基  金:supported by the National Key Research and Development Program of China(Grant No.2022YFB3804100);the National Natural Science Foundation of China(Grant Nos.52371149 and 52171153).

摘  要:Enhancing saturation magnetic flux density(Bs)while reducing high-frequency core loss in Finemet-type nanocrystalline alloys is of great significance in achieving the miniaturization,high-frequency,and energy-saving of modern power electronic devices.In this work,we first designed a high-Bs Fe_(77.2)Si_(11)B_(8.5)Cu_(0.8)Nb_(2.5)alloy by appropriately reducing the non-magnetic elements in typical Finemet nanocrystalline alloys,and subsequently alloyed 2 at%Co,Al,and Mo,respectively.The effects of alloying elements on structure and static and high-frequency magnetic properties were studied.The results reveal that,alloying Al or Mo reduces the averageα-Fe grain size(Dα-Fe)in the nanocrystalline alloys,while Co exhibits a slight influence.The added Al or Mo results in decreases in both the Bs and coercivity(Hc)of the nanocrystalline alloys,whereas Co increases the Bs without changing Hc,and meanwhile,all alloying elements show minimal effects on effective permeability(μe).Furthermore,the addition of Co,Al,or Mo lowers the core loss(Pcv)at 0.2 T/100 kHz of the based nanocrystalline alloy with reductions of 10.9%,29.6%,and 26.8%,respectively.A Fe_(75.2)Si_(11)B_(8.5)Cu_(0.8)Nb_(2.5)Al_(2)nanocrystalline alloy exhibits outstanding soft magnetic properties with Bs,Hc,μe at 10 kHz and 100 kHz,and Pcv at 0.2 T/100 kHz of 1.34 T,0.8 A/m,27,400,18,000,and 350 kW/m3,respectively.The reduction in Pcv is primarily attributed to the decreased eddy current losses,originating from the increased electrical resistivity by elements alloying.

关 键 词:Fe-based nanocrystalline alloy Fe-Si-B-Cu-Nb alloy Soft magnetic property High-frequency loss Electrical resistivity 

分 类 号:TG139[一般工业技术—材料科学与工程] TG665[金属学及工艺—合金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象