RAIENet:End-to-End Multitasking Road All Information Extractor  

在线阅读下载全文

作  者:Xuemei Chen Pengfei Ren Zeyuan Xu Shuyuan Xu Yaohan Jia 

机构地区:[1]School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China

出  处:《Journal of Beijing Institute of Technology》2024年第5期374-388,共15页北京理工大学学报(英文版)

基  金:supported by the Key R&D Program of Shandong Province,China(No.2020CXGC010118);Advanced Technology Research Institute,Beijing Institute of Technology(BITAI).

摘  要:Road lanes and markings are the bases for autonomous driving environment perception.In this paper,we propose an end-to-end multi-task network,Road All Information Extractor named RAIENet,which aims to extract the full information of the road surface including road lanes,road markings and their correspondences.Based on the prior knowledge of pavement information,we explore and use the deep progressive relationship between lane segmentation and pavement mark-ing detection.Then,different attention mechanisms are adapted for different tasks.A lane detection accuracy of 0.807 F1-score and a ground marking accuracy of 0.971 mean average precision at intersection over union(IOU)threshold 0.5 were achieved on the newly labeled see more on road plus(CeyMo+)dataset.Of course,we also validated it on two well-known datasets Berkeley Deep-Drive 100K(BDD100K)and CULane.In addition,a post-processing method for generating bird’s eye view lane(BEVLane)using lidar point cloud information is proposed,which is used for the construction of high-definition maps and subsequent decision-making planning.The code and data are available at https://github.com/mayberpf/RAIEnet.

关 键 词:autonomous driving multitasking pavement marking detection lane segmentation pavement information 

分 类 号:U495[交通运输工程—交通运输规划与管理] TP391.41[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象