基于信道估计的多通道通信信号盲分离方法  

Blind Separation Method of Multi-channel Communication Signals Based on Channel Estimation

在线阅读下载全文

作  者:谢小军 XIE Xiao-jun(Information and Communication Branch of State Grid Anhui Electric Power Company,Hefei 230022 China)

机构地区:[1]国网安徽省电力有限公司信息通信分公司,安徽合肥230022

出  处:《自动化技术与应用》2024年第11期93-98,共6页Techniques of Automation and Applications

摘  要:针对多通道通信信号盲源分离效果差,提出基于信道估计的多通道通信信号盲分离方法。根据信号频率、相位、斜率等特征建立信号通信模型,利用基扩展模型、傅里叶变换获取接收信号;使用联合函数、目标函数确定信号寻优参数,按照二进制算法编码信号各分量,结合随机函数生成初始种群,并做遗传处理,获取初始参数值,通过顶点函数搜寻出最优参数,确定源信号组成成分并重构,最终得到源信号,实现多通道通信信号盲分离。实验结果表明,所提方法信噪比为14.2 dB,失真比在9.6 dB左右,并且适用于多通道通信信号盲分离,该方法具备可行性和有效性。Aiming at the poor effect of blind source separation of multi-channel communication signals,a blind separation method based on channel estimation is proposed.The signal communication model is established according to the characteristics of signal frequency,phase,slope,etc.,and the received signal is obtained by using the base extension model and Fourier transform.The combination function and the objective function are used to determine the signal optimization parameters,the components of the signal are coded according to the binary algorithm,the initial population is generated combined with the random function,and the genetic processing is done to obtain the initial parameter values,the optimal parameters are searched through the vertex function,the source signal components are determined and reconstructed,and the source signal is finally obtained,realizing the blind separation of multi-channel communication signals.Experimental results show that the proposed method has a signal-to-noise ratio of 14.2 dB and a distortion ratio of about 9.6 dB,and it is suitable for blind separation of multi-channel communication signals.The proposed method is feasible and effective.

关 键 词:信道估计 多通道通信 盲源信号 遗传算法 信噪比 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象