基于故障电荷量比较和证据理论的输电网广域保护算法  

A Wide Area Protection Algorithm for Transmission Network Based on Fault Charge Comparison and Evidence Theory

在线阅读下载全文

作  者:胡婷 贾科 毕天姝 董学正 HU Ting;JIA Ke;BI Tianshu;DONG Xuezheng(State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources(North China Electric Power University),Changping District,Beijing 102206,China)

机构地区:[1]新能源电力系统国家重点实验室(华北电力大学),北京市昌平区102206

出  处:《电网技术》2024年第11期4739-4747,I0081,I0082,共11页Power System Technology

基  金:国家自然科学基金面上项目(52277097)。

摘  要:为了降低广域保护信息传输的通信量,并提高在信息丢失和错误较多情况下算法的容错性,该文提出了一种基于故障电荷量比较和改进证据理论融合的广域保护算法。该方法电气量信息采用故障电荷量比较,通过就地积分保留两侧故障电流的正负特征;开关量信息仅使用距离保护Ⅱ、Ⅲ段启动信息,将故障关联系数和门槛值进行比较,并综合考虑所有正方向邻线对本线路的基本概率分配,最后利用改进的证据理论进行融合判断,从而可靠识别出故障线路。仿真结果表明,与传统算法相比,该算法所需通信量少,且在复杂工况、多位信息丢失和错误情况下仍能够准确识别故障线路。To reduce the transmission communication of wide area protection information and improve the fault tolerance of the algorithm in the case of more information loss and error,this paper proposes a wide area protection algorithm based on fault charge comparison and improved evidence theory fusion.In this method,the electrical information adopts the comparison of fault charge,and the positive and negative characteristics of fault currents on both sides are preserved by local integration.The switching information uses only the distance protectionⅡandⅢaction information.Then,the fault correlation coefficients are compared with the threshold value,and the basic probability assignments of all neighboring lines to this line are considered comprehensively.Finally,the improved evidence theory is used to identify the fault line for fusion.Simulation results show that compared with the traditional algorithm,the present algorithm requires less communication and can still accurately identify the faulty line under complex operating conditions,multiple information loss,and errors.

关 键 词:广域保护 证据理论 故障识别 容错性 

分 类 号:TM721[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象