Polyaniline spaced MoS_(2)nanosheets with increased interlayer distances for constructing high-rate dual-ion batteries  

在线阅读下载全文

作  者:Xuhui Liu Xingdong Ma Guoshun Liu Xiaobin Zhang Xiaoqi Tang Chao Li Xiaobei Zang Ning Cao Qingguo Shao 

机构地区:[1]School of Materials Science and Engineering,State Key Laboratory of Heavy Oil Processing,China University of Petroleum(East China),Qingdao 266580,China

出  处:《Journal of Materials Science & Technology》2024年第15期220-230,共11页材料科学技术(英文版)

基  金:supported by the Natural Science Foundation of Shandong Province with Grant No.ZR2020QE048;the National Natural Science Foundation of China with Grant No.21905304;the State Key Laboratory of Heavy Oil Processing with Grant No.SKLHOP202101006;the National Defense Science and Technology Innovation Special Zone Project No.22-05-CXZX-04-04-29.The authors also want to thank Shiyanjia Lab(www.shiyanjia.com)for the TEM test.

摘  要:Dual-ion batteries(DIBs)have attracted great attention due to their affordable prices,environmentalfriendliness,and high operating voltage.However,the conventional graphite anode in DIBs has draw-backs such as unsatisfactory capacity and worrying safety.MoS_(2)is considered to be a competitive anodematerial that exhibits large capacity due to its unique layered structure for cation insertion/extraction.Nevertheless,the sluggish reaction kinetics of MoS_(2)does not match the cathode side,which makes theconstructed full DIBs show poor rate ability.Here,a flower-like MoS_(2)/polyaniline composite electrode(MoS_(2)-PANI)where PANI was grown in situ between layers of MoS_(2)nanosheets was designed.In thisdesign,the inserted PANI can broaden the layer distance of MoS_(2)to facilitate cation diffusion and pre-vent the restacking of nanosheets.Furthermore,PANI is also expected to increase the conductivity andrelieve the volume changes during repeated charge/discharge cycles.Benefiting from that,the MoS_(2)-PANIelectrode delivered a reversible capacity of 561.91 mA h g^(-1) at 5 A g^(-1) in half-cell test.Moreover,whencoupled with a mildly expanded graphite(MEG)cathode,the obtained MEG//MoS_(2)-PANI DIB shows ex-cellent rate ability with a reversible discharge capacity of 86.62 mA h g^(-1) and a desirable energy densityof 308.83 W h kg-1 at 20 C.These results provide some inspiration for the design of high-rate DIBs.

关 键 词:Dual-ion Battery Anode materials MoS_(2) High rate performance 

分 类 号:TM912[电气工程—电力电子与电力传动] TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象