本刊英文版2024年67卷第12期(2671–2908)摘要  

在线阅读下载全文

出  处:《中国科学:数学》2024年第12期I0001-I0004,共4页Scientia Sinica:Mathematica

摘  要:Reverse mathematics and local rings Huishan Wu Abstract In this paper,we study local rings from the perspective of reverse mathematics.We define local rings in a first-order way by usingП_(2)^(0)properties of invertible elements,where for a ring R possibly not commutative,R is left (resp.right) local if for any non-left (resp.non-right) invertible elements x,y∈R,x+y is not left(resp.right) invertible;R is local if for any non-invertible elements x,y∈R,x+y is not invertible.Firstly,we solve a question of Sato on characterizations of commutative local rings in his PhD thesis (Question 6.22 in Sato (2016)) and prove that the statement“a commutative ring is local if and only if it has at most one maximal ideal”is equivalent to ACA0over RCA0.We also obtain a nice corollary in computable mathematics,i.e.,there is a computable non-local ring with exactly two maximal ideals such that each of them Turing computes the Halting set K.Secondly,we study the equivalence among left local rings,right local rings,and local rings,showing that these three kinds of first-order local rings are equivalent over the weak basis theory RCA0.Finally,we extend the results of reverse mathematics on commutative local rings to noncommutative rings.

关 键 词:COMMUTATIVE RINGS MAXIMAL 

分 类 号:Z89[文化科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象