检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国科学:数学》2024年第12期I0001-I0004,共4页Scientia Sinica:Mathematica
摘 要:Reverse mathematics and local rings Huishan Wu Abstract In this paper,we study local rings from the perspective of reverse mathematics.We define local rings in a first-order way by usingП_(2)^(0)properties of invertible elements,where for a ring R possibly not commutative,R is left (resp.right) local if for any non-left (resp.non-right) invertible elements x,y∈R,x+y is not left(resp.right) invertible;R is local if for any non-invertible elements x,y∈R,x+y is not invertible.Firstly,we solve a question of Sato on characterizations of commutative local rings in his PhD thesis (Question 6.22 in Sato (2016)) and prove that the statement“a commutative ring is local if and only if it has at most one maximal ideal”is equivalent to ACA0over RCA0.We also obtain a nice corollary in computable mathematics,i.e.,there is a computable non-local ring with exactly two maximal ideals such that each of them Turing computes the Halting set K.Secondly,we study the equivalence among left local rings,right local rings,and local rings,showing that these three kinds of first-order local rings are equivalent over the weak basis theory RCA0.Finally,we extend the results of reverse mathematics on commutative local rings to noncommutative rings.
关 键 词:COMMUTATIVE RINGS MAXIMAL
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7