A Study on the Second Order Tangent Bundles over Bi-Kählerian Manifolds  

在线阅读下载全文

作  者:Nour Elhouda DJAA Aydin GEZER Abderrahim ZAGANE 

机构地区:[1]Relizane University,Faculty of Sciences and Technology,Department of Mathematics,Algeria [2]Ataturk University,Faculty of Science,Department of Mathematics,25240,Erzurum-Turkey

出  处:《Chinese Annals of Mathematics,Series B》2024年第5期777-804,共28页数学年刊(B辑英文版)

摘  要:This paper aims to study the Berger type deformed Sasaki metric g_(BS)on the second order tangent bundle T^(2)M over a bi-Kählerian manifold M.The authors firstly find the Levi-Civita connection of the Berger type deformed Sasaki metric g_(BS)and calculate all forms of Riemannian curvature tensors of this metric.Also,they study geodesics on the second order tangent bundle T^(2)M and bi-unit second order tangent bundle T^(2)_(1,1)M,and characterize a geodesic of the bi-unit second order tangent bundle in terms of geodesic curvatures of its projection to the base.Finally,they present some conditions for a sectionσ:M→T^(2)M to be harmonic and study the harmonicity of the different canonical projections and inclusions of(T^(2)M,g_(BS)).Moreover,they search the harmonicity of the Berger type deformed Sasaki metric g_(BS)and the Sasaki metric g_(S) with respect to each other.

关 键 词:Berger type deformed Sasaki metric Bi-Kählerian structure GEODESICS Harmonicity Riemannian curvature tensor Second order tangent bundle 

分 类 号:O186.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象