检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张慧玲 许海云 刘春江[3] 陈亮[4] 王超[2] 王海燕[4] Zhang Huiling;Xu Haiyun;Liu Chunjiang;Chen Liang;Wang Chao;Wang Haiyan(Taiyuan City Public Library,Taiyuan 030024;Business School,Shandong University of Technology,Zibo 255000;National Science Library(Chengdu),Chinese Academy of Sciences,Chengdu 610299;Institute of Scientific and Technical Information of China,Beijing 100038)
机构地区:[1]太原市图书馆,太原030024 [2]山东理工大学管理学院,淄博255000 [3]中国科学院成都文献情报中心,成都610299 [4]中国科学技术信息研究所,北京100038
出 处:《情报学报》2024年第10期1129-1141,共13页Journal of the China Society for Scientific and Technical Information
基 金:国家自然科学基金项目“基于弱信号时效网络演化分析的变革性科技创新主题早期识别方法研究”(72274113);国家重点研发计划项目课题“颠覆性技术地平线扫描系统”(2019YFA0707202-01);山东省泰山学者工程项目“变革性科技创新:动因解析、早期识别与预测”(202103069)。
摘 要:科技创新弱信号作为未来科技前沿发展的线索,蕴含潜在的创新方向、科技趋势与市场机会。目前,科技预见方法存在挖掘覆盖度低、模型与方法泛化能力弱、可解释度低与主观认知局限等问题。本文系统梳理潜在可行的科技创新弱信号感知模型与方法,以期支撑面向未来技术前瞻预见的智慧情报分析。首先,剖析科技创新弱信号的内涵及其情报感知特征;其次,围绕以弱信号识别、意义建构、预测与响应以及感知效果评估为反馈闭环的科技创新弱信号早期情报感知框架,结合定量与定性、主观与客观、因果与相关三个方法维度,依据科技创新弱信号的特征、适用性与可解释性,探究可用于科技创新弱信号不同感知阶段的潜在方法,解析不同阶段方法的优缺点及组合适用情况;最后,以干细胞领域的案例分析验证了本文提出的感知方法及流程的可行性。未来需要拓展科技创新弱信号的感知模型与溯源方法,扩展科技创新弱信号的特征覆盖度,开发数智驱动的科技创新弱信号感知方法工具库,支撑不确定环境下新兴前沿技术的超前感知。Weak signals in science and technology(WSST)are indicators of future technological advancements,offering insights into innovation trends,emerging opportunities,and market directions.However,there is currently a lack of comprehensive method libraries for early WSST perception.Existing approaches are limited in their ability to mine weak technological signal features and suffer from low interpretability and subjective constraints.This article systematically categorizes potential models and methods for WSST perception,with the goal of enabling intelligent analysis for technology foresight.We begin by examining the essence of WSST and the attributes of intelligent perception.Then,we integrate three methodological dimensions—quantitative and qualitative,subjective and objective,and causal and correlative—to compile a method library and toolset for early WSST perception. By assessing WSST characteristics, applicability, and interpretability,we identify methods suitable for various stages of signal perception. Additionally, we evaluate intelligent perception techniques,highlighting their advantages and limitations, while proposing future research directions. Case studies in the field ofstem cells validate the feasibility of the proposed perception methods and processes. Moving forward, there is a need for novelcognitive perception models and traceability methods for WSST, aimed at expanding characteristics coverage and developingperception techniques driven by digital intelligence to support emerging technologies in uncertain environments.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.211.215