检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:甘臣权 郭宇航 祝清意 GAN Chenquan;GUO Yuhang;ZHU Qingyi(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Cyber Security and Information Law,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
机构地区:[1]重庆邮电大学通信与信息工程学院,重庆400065 [2]重庆邮电大学网络空间安全与信息法学院,重庆400065
出 处:《电讯技术》2024年第11期1726-1733,共8页Telecommunication Engineering
基 金:重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0761);广西重点研发计划(AB24010317)。
摘 要:为了在可重构智能反射面(Reconfigurable Intelligent Surface,RIS)辅助通信系统中精确估计信道,并解决信道估计开销过高的问题,提出了一种基于快速超分辨率卷积神经网络(Fast Super-Resolution Convolutional Neural Network,FSRCNN)的信道估计方案。在信道估计的初始阶段,选择关闭部分反射元件,并借助少量导频信号完成信道估计,将估计结果视为低精度与低分辨率(Low Resolution,LR)的图像,通过线性插值将其扩展为具有低精度的高分辨率(High Revolution,HR)图像。随后,利用FSRCNN提高估计结果的精度,并通过基于深度残差网络的噪声去除模型(CNN-based Deep Residual Network,CDRN)进一步提升信道估计的准确性。数值结果表明,相较于基准方案,所提的信道估计方案在保持低信道估计开销的同时,得到了更准确的信道估计结果。To precisely estimate the channel in reconfigurable intelligent surface(RIS)-assisted communication systems,and solve the issue of high channel estimation overhead,the authors propose a channel estimation scheme based on the fast super-resolution convolutional neural network(FSRCNN).In the initial phase of channel estimation,a subset of reflective elements is deactivated,and a limited number of pilot signals are utilized to conduct the channel estimation,and the estimation outcomes are treated as low-precision and low-resolution(LR)images.These LR images are subsequently upscaled to highresolution(HR)images with low precision through linear interpolation.Subsequently,the precision of the estimation outcomes is enhanced using FSRCNN,and further elevated through the convolutional neural network-based deep residual network(CDRN).Numerical results demonstrate that,the proposed method achieves more accurate results while concurrently minimizing the associated computational overhead of low channel estimation compared with the baseline method.
关 键 词:可重构智能反射面 信道估计 超分辨网络 深度残差网络
分 类 号:TN929.53[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249