基于弱化与增强网络的雷达信号识别  

Radar Signal Recognition Based on Weakening and Strengthening Network

在线阅读下载全文

作  者:施力泉 张红梅 SHI Liquan;ZHANG Hongmei(School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China;The Ministry of Education Key Laboratory of Cognitive Radio and Information Processing,Guilin 541004,China)

机构地区:[1]桂林电子科技大学信息与通信学院,广西桂林541004 [2]认知无线电与信息处理省部共建教育部重点实验室,广西桂林541004

出  处:《电讯技术》2024年第11期1844-1849,共6页Telecommunication Engineering

基  金:广西自然科学基金重点项目(2020GXNSFDA238001);广西无线宽带通信与信号处理重点实验室(桂林电子技术大学)基金(GXKL0600104);认知无线电与信息处理省部共建教育部重点实验室(桂林电子科技大学)基金(CRKL200101)。

摘  要:针对传统方法在低信噪比情况下雷达信号特征提取困难、识别准确率较低的问题,提出了一种基于时频分析和深度学习的雷达信号识别方法。首先利用Choi-Williams分布将时域信号转换成时频图像,然后将时频图像作为网络的输入,通过弱化与增强残差块来实现对时频图像中噪声信息的弱化以及不同特征形态间差异性的增强,最终实现分类识别。实验结果表明,在信噪比为-10 dB情况下平均识别准确率仍能达到94.5%以上。In response to the difficulties in extracting radar signal features and low recognition accuracy in low signal-to-noise ratio(SNR)situations using traditional methods,a radar signal recognition method based on time-frequency analysis and deep learning is proposed.Firstly,Choi-Williams distribution is used to convert the time-domain signal into a time-frequency image.Then,the time-frequency image is used as input to the network,and the noise information in the time-frequency image is weakened and the differences between different feature forms are enhanced through weakening and strengthening residual module,ultimately achieving classification recognition.The experimental results show that the average recognition accuracy can still reach over 94.5%even under a SNR of-10 dB.

关 键 词:雷达信号识别 低信噪比信号 时频分析 深度学习 弱化与增强 

分 类 号:TN957.51[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象