检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Junchen YE Zhixin ZHANG Ke CHENG Xuyan TAN Bowen DU Weizhong CHEN
机构地区:[1]School of Transportation Science and Engineering,Beihang University,Beijing 100191,China [2]CCSE Lab,Beihang University,Beijing 100191,China [3]State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics Chinese Academy of Sciences,Wuhan 430071,China [4]University of Chinese Academy of Sciences,Beijing 100049,China
出 处:《Frontiers of Structural and Civil Engineering》2024年第10期1479-1491,共13页结构与土木工程前沿(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.51991395,51991391,and U1811463);the S&T Program of Hebei,China(No.225A0802D).
摘 要:Civil infrastructure is prone to structural damage due to high geo-stress and other natural disasters,so monitoring is required.Data collected by structural health monitoring(SHM)systems are easily affected by many factors,such as temperature,sensor fluctuation,sensor failure,which can introduce a lot of noise,increasing the difficulty of structural anomaly identification.To address this problem,this paper designs a new process of structural anomaly identification under noisy conditions and offers Civil Infrastructure Denoising Autoencoder(CIDAE),a denoising autoencoder-based deep learning model for SHM of civil infrastructure.As a case study,the effectiveness of the proposed model is verified by experiments on deformation stress data of the Wuhan Yangtze River Tunnel based on finite element simulation.Investigation of the circumferential weld and longitudinal weld data of the case study is also conducted.It is concluded that CIDAE is superior to traditional methods.
关 键 词:structural health monitoring deep learning anomaly detection
分 类 号:TM24[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.109.137